Skip to main content

Motility and Pressure Phenomena of the Esophagus

  • Chapter
  • First Online:
Principles of Deglutition

Abstract

The esophagus is a muscular tube consisting of three functional regions: the upper and lower esophageal sphincters, and the esophageal body. On high-resolution manometry, the esophageal body consists of three contracting segments: the proximal striated muscle segment, followed by two smooth muscle segments, separated by pressure troughs. The sphincters and contracting segments function in contiguity to form a chain of relaxing and contracting segments, modulated by cortical, brain stem, and peripheral influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42:610–9.

    Article  PubMed  Google Scholar 

  2. Pandolfino JE, Ghosh SK, Rice J, Clarke JO, Kwiatek MA, Kahrilas PJ. Classifying esophageal motility by pressure topography characteristics: a study of 400 patients and 75 controls. Am J Gastroenterol. 2008;103:27–37.

    PubMed  Google Scholar 

  3. Pandolfino JE, Kwiatek MA, Nealis T, Bulsiewicz W, Post J, Kahrilas PJ. Achalasia: a new clinically relevant classification by high-resolution manometry. Gastroenterology. 2008;135:1526–33.

    Article  PubMed  Google Scholar 

  4. Conklin JL, Christensen J. Motor functions of the esophagus. In: Christensen JJ, Alpers D, Jacobsen ED, Walsh J, editors. Physiology of the gastrointestinal tract. Raven Press, New York. 1994. pp. 33–40.

    Google Scholar 

  5. Miller A, Bieger MD, Conklin JL. Functional controls of deglutition. In: Perlman A, Schulze-Delrieu K, ­editors. Deglutition and its disorders: anatomy, physiology, clinical diagnosis and management. San Diego, CA: Singular Publishing Group, Inc.; 1996. p. 43–97.

    Google Scholar 

  6. Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology. 1988;95:52–62.

    PubMed  CAS  Google Scholar 

  7. Sivarao DV, Goyal RK. Functional anatomy and physiology of the upper esophageal sphincter. Am J Med. 2000;108(Suppl 4a):27S–37.

    Article  PubMed  Google Scholar 

  8. Lang IM, Shaker R. Anatomy and physiology of the upper esophageal sphincter. Am J Med. 1997;103: 50S–5.

    Article  PubMed  CAS  Google Scholar 

  9. Bombeck CT, Dillard DH, Nyhus LM. Muscular anatomy of the gastroesophageal junction and role of phrenoesophageal ligament; autopsy study of sphincter mechanism. Ann Surg. 1966;164:643–54.

    Article  PubMed  CAS  Google Scholar 

  10. Christensen J, Robison BA. Anatomy of the myenteric plexus of the opossum esophagus. Gastroenterology. 1982;83:1033–42.

    PubMed  CAS  Google Scholar 

  11. Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114:2226–44.

    Article  PubMed  Google Scholar 

  12. Mittal RK, Balaban DH. The esophagogastric junction. N Engl J Med. 1997;336:924–32.

    Article  PubMed  CAS  Google Scholar 

  13. Goyal RK, Rattan S. Nature of the vagal inhibitory innervation to the lower esophageal sphincter. J Clin Invest. 1975;55:1119–26.

    Article  PubMed  CAS  Google Scholar 

  14. Yamato S, Spechler SJ, Goyal RK. Role of nitric oxide in esophageal peristalsis in the opossum. Gastroenterology. 1992;103:197–204.

    PubMed  CAS  Google Scholar 

  15. Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, Diamant NE. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol. 1999;277:G219–25.

    PubMed  CAS  Google Scholar 

  16. Cola MG, Daniels SK, Corey DM, Lemen LC, Romero M, Foundas AL. Relevance of subcortical stroke in dysphagia. Stroke. 2010;41:482–6.

    Article  PubMed  Google Scholar 

  17. Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17:166–71.

    Article  PubMed  Google Scholar 

  18. Gonzalez-Fernandez M, Kleinman JT, Ky PK, Palmer JB, Hillis AE. Supratentorial regions of acute ischemia associated with clinically important swallowing disorders: a pilot study. Stroke. 2008;39:3022–8.

    Article  PubMed  Google Scholar 

  19. Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL. Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage. 2008;42:285–95.

    Article  PubMed  Google Scholar 

  20. Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med. 2000; 108(Suppl 4a):79S–86.

    Article  PubMed  Google Scholar 

  21. Roman C. Nervous control of esophageal peristalsis. J Physiol Paris. 1966;58:79–108.

    PubMed  CAS  Google Scholar 

  22. Higgs B, Kerr FW, Ellis Jr FH. The experimental production of esophageal achalasia by electrolytic lesions in the medulla. J Thorac Cardiovasc Surg. 1965;50:613–25.

    PubMed  CAS  Google Scholar 

  23. MacGilchrist AJ, Christensen J, Rick GA. The distribution of myelinated nerve fibers in the mature opossum esophagus. J Auton Nerv Syst. 1991;35:227–35.

    Article  PubMed  CAS  Google Scholar 

  24. Doty RW. Neural organization of deglutition. In: Code CF, editor. Handbook of physiology, vol. 4. Washington, DC: American Psychological Society; 1968. p. 1861–902.

    Google Scholar 

  25. Pandolfino JE, Kahrilas PJ. AGA technical review on the clinical use of esophageal manometry. Gastroenterology. 2005;128:209–24.

    Article  PubMed  Google Scholar 

  26. Murray JA, Clouse RE, Conklin JL. Components of the standard oesophageal manometry. Neurogastroenterol Motil. 2003;15:591–606.

    Article  PubMed  CAS  Google Scholar 

  27. Dent J. A new technique for continuous sphincter pressure measurement. Gastroenterology. 1976;71:263–7.

    PubMed  CAS  Google Scholar 

  28. Clouse RE, Staiano A. Topography of the esophageal peristaltic pressure wave. Am J Physiol. 1991;261: G677–84.

    PubMed  CAS  Google Scholar 

  29. Clouse RE, Prakash C. Topographic esophageal manometry: an emerging clinical and investigative approach. Dig Dis. 2000;18:64–74.

    Article  PubMed  CAS  Google Scholar 

  30. Clouse RE, Staiano A, Alrakawi A, Haroian L. Application of topographical methods to clinical esophageal manometry. Am J Gastroenterol. 2000;95: 2720–30.

    Article  PubMed  CAS  Google Scholar 

  31. Clouse RE, Parks TR, Haroian LR. Novel solid-state technology simplifies high-resolution manometry (HRM) for clinical use. Gastroenterology. 2004;126:A638.

    Google Scholar 

  32. Kahrilas PJ. Esophageal motor disorders in terms of high-resolution esophageal pressure topography: what has changed? Am J Gastroenterol. 2010;105:981–7.

    Article  PubMed  Google Scholar 

  33. Salvador R, Dubecz A, Polomsky M, Gellerson O, Jones CE, Raymond DP, Watson TJ, Peters JH. A new era in esophageal diagnostics: the image-based paradigm of high-resolution manometry. J Am Coll Surg. 2009;208:1035–44.

    Article  PubMed  Google Scholar 

  34. Soudagar AS, Sayuk GS, Gyawali CP. Learners Favor High Resolution Esophageal Manometry With Better Diagnostic Accuracy Over Conventional Line Tracings. Gut 2012;61:798–803.

    Google Scholar 

  35. Bulsiewicz WJ, Kahrilas PJ, Kwiatek MA, Ghosh SK, Meek A, Pandolfino JE. Esophageal pressure topography criteria indicative of incomplete bolus clearance: a study using high-resolution impedance manometry. Am J Gastroenterol. 2009;104:2721–8.

    Article  PubMed  Google Scholar 

  36. Cheeney G, Remes-Troche JM, Attaluri A, Rao SS. Investigation of anal motor characteristics of the sensorimotor response (SMR) using 3-D anorectal pressure topography. Am J Physiol Gastrointest Liver Physiol. 2011;300:G236–40.

    Article  PubMed  CAS  Google Scholar 

  37. Clouse RE, Staiano A. Topography of normal and high-amplitude esophageal peristalsis. Am J Physiol. 1993;265:G1098–107.

    PubMed  CAS  Google Scholar 

  38. Li M, Brasseur BJ, Hsieh PY, Nicosia M, Kern MK, Massey BT. A conversion methodology to analyze manometric pressure in space-time. Gastroenterology. 1994;106:A530.

    Google Scholar 

  39. Staiano A, Clouse RE. The effects of cisapride on the topography of oesophageal peristalsis. Aliment Pharmacol Ther. 1996;10:875–82.

    Article  PubMed  CAS  Google Scholar 

  40. Massey BT, Dodds WJ, Hogan WJ, Brasseur JG, Helm JF. Abnormal esophageal motility. An analysis of concurrent radiographic and manometric findings. Gastroenterology. 1991;101:344–54.

    PubMed  CAS  Google Scholar 

  41. Clouse RE, Staiano A. Contraction abnormalities of the esophageal body in patients referred to manometry. A new approach to manometric classification. Dig Dis Sci. 1983;28:784–91.

    Article  PubMed  CAS  Google Scholar 

  42. Kahrilas PJ, Dodds WJ, Hogan WJ, Kern M, Arndorfer RC, Reece A. Esophageal peristaltic dysfunction in peptic esophagitis. Gastroenterology. 1986;91:897–904.

    PubMed  CAS  Google Scholar 

  43. Richter JE, Wu WC, Johns DN, Blackwell JN, Nelson 3rd JL, Castell JA, Castell DO. Esophageal manometry in 95 healthy adult volunteers. Variability of pressures with age and frequency of “abnormal” contractions. Dig Dis Sci. 1987;32:583–92.

    Article  PubMed  CAS  Google Scholar 

  44. Humphries TJ, Castell DO. Pressure profile of esophageal peristalsis in normal humans as measured by direct intraesophageal transducers. Am J Dig Dis. 1977;22:641–5.

    Article  PubMed  CAS  Google Scholar 

  45. Kahrilas PJ, Dodds WJ, Hogan WJ. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology. 1988;94:73–80.

    PubMed  CAS  Google Scholar 

  46. Clouse RE, Staiano A, Landau DW, Schlachter JL. Manometric findings during spontaneous chest pain in patients with presumed esophageal “spasms”. Gastroenterology. 1983;85:395–402.

    PubMed  CAS  Google Scholar 

  47. Clouse RE, Hallett JL. Velocity of peristaltic propagation in distal esophageal segments. Dig Dis Sci. 1995;40:1311–6.

    Article  PubMed  CAS  Google Scholar 

  48. Hewson EG, Ott DJ, Dalton CB, Chen YM, Wu WC, Richter JE. Manometry and radiology. Complementary studies in the assessment of esophageal motility disorders. Gastroenterology. 1990;98:626–32.

    PubMed  CAS  Google Scholar 

  49. Ghosh SK, Kahrilas PJ, Lodhia N, Pandolfino JE. Utilizing intraluminal pressure differences to predict esophageal bolus flow dynamics. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1023–8.

    Article  PubMed  CAS  Google Scholar 

  50. Edmundowicz SA, Clouse RE. Shortening of the esophagus in response to swallowing. Am J Physiol. 1991;260:G512–6.

    PubMed  CAS  Google Scholar 

  51. Pouderoux P, Lin S, Kahrilas PJ. Timing, propagation, coordination, and effect of esophageal shortening during peristalsis. Gastroenterology. 1997;112:1147–54.

    Article  PubMed  CAS  Google Scholar 

  52. Nicosia MA, Brasseur JG, Liu JB, Miller LS. Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1022–33.

    PubMed  CAS  Google Scholar 

  53. Gyawali CP, Kushnir VM. High-resolution manometric characteristics help differentiate types of distal esophageal obstruction in patients with peristalsis. Neurogastroenterol Motil. 2011;23(6):502-e197.

    Article  PubMed  Google Scholar 

  54. Ghosh SK, Janiak P, Fox M, Schwizer W, Hebbard GS, Brasseur JG. Physiology of the oesophageal ­transition zone in the presence of chronic bolus ­retention: studies using concurrent high resolution manometry and digital fluoroscopy. Neurogastroenterol Motil. 2008;20:750–9.

    Article  PubMed  CAS  Google Scholar 

  55. Clouse RE, Alrakawi A, Staiano A. Intersubject and interswallow variability in topography of esophageal motility. Dig Dis Sci. 1998;43:1978–85.

    Article  PubMed  CAS  Google Scholar 

  56. Ghosh SK, Janiak P, Schwizer W, Hebbard GS, Brasseur JG. Physiology of the esophageal pressure transition zone: separate contraction waves above and below. Am J Physiol Gastrointest Liver Physiol. 2006;290:G568–76.

    Article  PubMed  CAS  Google Scholar 

  57. Kumar N, Porter RF, Gyawali CP. Extended intersegmental troughs (ISTs) between skeletal and smooth muscle contraction segments on high resolution manometry (HRM). Neurogastroenterol Motil. 2009;21:A117.

    Google Scholar 

  58. Ghosh SK, Pandolfino JE, Kwiatek MA, Kahrilas PJ. Oesophageal peristaltic transition zone defects: real but few and far between. Neurogastroenterol Motil. 2008;20:1283–90.

    Article  PubMed  CAS  Google Scholar 

  59. Crist J, Gidda JS, Goyal RK. Intramural mechanism of esophageal peristalsis: roles of cholinergic and noncholinergic nerves. Proc Natl Acad Sci USA. 1984;81:3595–9.

    Article  PubMed  CAS  Google Scholar 

  60. Porter RF, Kumar N, Gyawali CP. Fragmented and failed esophageal smooth muscle contraction segments on high resolution manometry. Neurogastroenterol Motil. 2009;21:A185.

    Google Scholar 

  61. Clouse RE, Staiano A, Alrakawi A. Topographic ­analysis of esophageal double-peaked waves. Gastroenterology. 2000;118:469–76.

    Article  PubMed  CAS  Google Scholar 

  62. Ghosh SK, Pandolfino JE, Zhang Q, Jarosz A, Shah N, Kahrilas PJ. Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290:G988–97.

    Article  PubMed  CAS  Google Scholar 

  63. Roman S, Lin Z, Pandolfino JE, Kahrilas PJ. Distal contraction latency: a measure of propagation velocity optimized for esophageal pressure topography studies. Am J Gastroenterol. 2011;106(3):443–51.

    Article  PubMed  Google Scholar 

  64. Pandolfino JE, Leslie E, Luger D, Mitchell B, Kwiatek MA, Kahrilas PJ. The contractile deceleration point: an important physiologic landmark on oesophageal pressure topography. Neurogastroenterol Motil. 2010;22:395–400. e90.

    Article  PubMed  CAS  Google Scholar 

  65. Pandolfino JE, Fox MR, Bredenoord AJ, Kahrilas PJ. High-resolution manometry in clinical practice: utilizing pressure topography to classify oesophageal motility abnormalities. Neurogastroenterol Motil. 2009;21:796–806.

    Article  PubMed  CAS  Google Scholar 

  66. Scherer JR, Kwiatek MA, Soper NJ, Pandolfino JE, Kahrilas PJ. Functional esophagogastric junction obstruction with intact peristalsis: a heterogeneous syndrome sometimes akin to achalasia. J Gastrointest Surg. 2009;13:2219–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Prakash Gyawali MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kushnir, V.M., Gyawali, C.P. (2013). Motility and Pressure Phenomena of the Esophagus. In: Shaker, R., Belafsky, P., Postma, G., Easterling, C. (eds) Principles of Deglutition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3794-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3794-9_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3793-2

  • Online ISBN: 978-1-4614-3794-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics