Skip to main content

Etiology and Epidemiology of Chronic Myeloid Leukemia

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Reliable epidemiological information on chronic myeloproliferative disorders (CMPD), notably Philadelphia (Ph)/BCR-ABL-positive chronic myeloid leukemia (CML), is sparse. CML incidence rates vary from 0.6 to 2.0 cases per 100,000 inhabitants, increase with age, and occur more often in men than in women. Geographic and/or ethnic variations might contribute to the variability of incidences of CML. CML can be induced by acute high-dose ionizing radiation exposure and exposure to benzene. Prevalence rate has recently increased by use of tyrosine kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This survey was conducted between November 2007 and February 2008 by the independent market research agency TNS and funded by Bristol-Myers Squibb.

References

  1. Lichtman MA. Is there an entity of chemically induced BCR-ABL-positive chronic myelogenous leukemia? Oncologist. 2008;13(6):645–54.

    Article  PubMed  Google Scholar 

  2. Segel GB, Lichtman MA. Familial (inherited) leukemia, lymphoma, and myeloma: an overview. Blood Cells Mol Dis. 2004;32:246–61.

    Article  PubMed  Google Scholar 

  3. Hemminki K, Jiang Y. Familial myeloid leukemias from the Swedish Family-Cancer Database. Leuk Res. 2002;26:611–3.

    Article  PubMed  Google Scholar 

  4. Kasim K, Levallois P, Abdous B, et al. Lifestyle factors and the risk of adult leukemia in Canada. Cancer Causes Control. 2005;16(5):489–500.

    Article  PubMed  Google Scholar 

  5. Strom SS, Yamamura Y, Kantarjian HM, et al. Obesity, weight gain, and risk of chronic myeloid leukemia. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1501–6.

    Article  PubMed  Google Scholar 

  6. Lamm SH, Engel A, Joshi KP, et al. Chronic myelogenous leukemia and benzene exposure: a systematic review and meta-analysis of the case-control literature. Chem Biol Interact. 2009;182(2–3):93–7.

    Article  PubMed  CAS  Google Scholar 

  7. Mehlman MA. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industries. Part XXX: causal relationship between chronic myelogenous leukemia and benzene-containing solvents. Ann N Y Acad Sci. 2006;1076:110–9.

    Article  PubMed  CAS  Google Scholar 

  8. Björk J, Albin M, Welinder H, et al. Are occupational, hobby, or lifestyle exposures associated with Philadelphia chromosome positive chronic myeloid leukaemia? Occup Environ Med. 2001;58(11):722–7.

    Article  PubMed  Google Scholar 

  9. Brandt L. Environmental factors and leukaemia. Med Oncol Tumor Pharmacother. 1985;2(1):7–10.

    PubMed  CAS  Google Scholar 

  10. Schnatter AR, Rosamilia K, et al. Review of the literature on benzene exposure and leukemia subtypes. Chem Biol Interact. 2005;153–154:9–21.

    Article  PubMed  Google Scholar 

  11. Smith MT. The mechanism of benzene-induced leukemia: a hypothesis and speculations on the cause of leukemia. Environ Health Perspect. 2007;104 Suppl 6:1219–25.

    Article  Google Scholar 

  12. Whysner J, Reddy MV, Ross PM, et al. Genotoxicity of benzene and its metabolites. Mutat Res. 2004;566:99–130.

    Article  PubMed  CAS  Google Scholar 

  13. Escobar PA, Smith MT, Vasishta A, et al. Leukaemia-specific chromosome damage detected by comet with fluorescence in situ hybridization (comet-FISH). Mutagenesis. 2007;22:321–7.

    Article  PubMed  CAS  Google Scholar 

  14. Lindsey Jr RH, Bender RP, Osheroff N. Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chem Res Toxicol. 2005;18:761–70.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang L, Yang W, Hubbard AE, et al. Nonrandom aneuploidy of chromosomes 1, 5, 6, 7, 8, 9, 11, 12, and 21 induced by the benzene metabolites hydroquinone and benzenetriol. Environ Mol Mutagen. 2005;45:388–96.

    Article  PubMed  CAS  Google Scholar 

  16. Mamuris Z, Prieur M, Dutrillaux B, et al. The chemotherapeutic drug melphalan induces breakage of chromosomes regions rearranged in secondary leukemia. Cancer Genet Cytogenet. 1989;37:65–77.

    Article  PubMed  CAS  Google Scholar 

  17. Beranek DT. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res. 1990;231:11–30.

    Article  PubMed  CAS  Google Scholar 

  18. Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137 Suppl 2:S68–97.

    Article  PubMed  CAS  Google Scholar 

  19. Finch SC. Radiation-induced leukemia: lessons from history. Best Pract Res Clin Haematol. 2007;20:109–18.

    Article  PubMed  Google Scholar 

  20. Ichimaru M, Tomonaga M, Amenomori T, et al. Atomic bomb and leukemia. J Radiat Res (Tokyo). 1991;32 Suppl 2:14–9.

    Article  Google Scholar 

  21. Gluzman D, Imamura N, Sklyarenko L, et al. Patterns of hematological malignancies in Chernobyl clean-up workers (1996–2005). Exp Oncol. 2006;28(1):60–3.

    PubMed  CAS  Google Scholar 

  22. Ito T, Seyama T, Mizuno T, et al. Induction of BCR-ABL fusion genes by in vitro X-irradiation. Jpn J Cancer Res. 1993;84:105–9.

    Article  PubMed  CAS  Google Scholar 

  23. Deininger MW, Bose S, Gora-Tybor J, et al. Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation. Cancer Res. 1998;58:421–5.

    PubMed  CAS  Google Scholar 

  24. Rohrbacher M, Hasford J. Epidemiology of chronic myeloid leukaemia (CML) [review]. Best Pract Res Clin Haematol. 2009;22(3):295–302.

    Article  PubMed  Google Scholar 

  25. Parkin DM. The evolution of the population-based cancer registry. Nat Rev Cancer. 2006;6:603–12.

    Article  PubMed  CAS  Google Scholar 

  26. Swedish Cancer Registry, 1998–2006, Annual report publications of the Centre of Epidemiology at the National Board of Health and Welfare. http://www.socialstyrelsen.se/Statistik/statistik_amne/Cancer. Accessed May, 2010.

  27. Krebsregister Saarland, Germany. http://www.krebsregister.saarland.de. Accessed May, 2010.

  28. Altekruse SF, Kosary CL, Krapcho M, et al. SEER cancer statistics review, 1975–2007, National Cancer Institute, Bethesda, MD. http://seer.cancer.gov/csr/1975_2007/. Accessed May, 2010.

  29. Micheli A, Coebergh JW, Mugno E, et al. European health systems and cancer care. Ann Oncol. 2003;14 Suppl 5:v41–60.

    Article  PubMed  Google Scholar 

  30. Phekoo KJ, Richards MA, Moller H, Schey SA. The incidence and outcome of myeloid malignancies in 2,112 adult patients in south East-England. Haematologica. 2006;91:1400–4.

    PubMed  Google Scholar 

  31. Harrison SJ, Johnson PRE, Holyoake TL. The Scotland Leukaemia Registry audit of incidence, diagnosis and clinical management of new patients with chronic myeloid leukaemia in 1999 and 2000. Scott Med J. 2004;49:87–90.

    PubMed  CAS  Google Scholar 

  32. McNally RJ, Rowland D, Roman E, Cartwright RA. Age and sex distributions of hematological malignancies in the U.K. Hematol Oncol. 1997;15:173–89.

    Article  PubMed  CAS  Google Scholar 

  33. Rohrbacher M, Berger U, Hochhaus A, et al. Clinical trials underestimate age of chronic myeloid leukemia (CML) patients. incidence and median age of Ph/BCR-ABL positive CML and other chronic myeloproliferative disorders in a representative area in Germany. Leukemia. 2008;23:602–4.

    Article  PubMed  Google Scholar 

  34. Hasford J, Tauscher M, Hochhaus A. Incidence, comorbidity and treatment survey of chronic myeloid leukemia in Germany. Blood (ASH Annual Meeting Abstracts) 2007; 110: Abstract 2964.

    Google Scholar 

  35. Corm S, Micol J, Leroyer A et al. Kinetic of chronic myeloid leukaemia (CML) prevalence in Northern France since the introduction of imatinib. J Clin Oncol 2008;26 (May 20 Suppl); Abstract 7088).

    Google Scholar 

  36. Lee J, Birnstein E, Masiello D, Yang D, et al. Gender and ethnic differences in chronic myelogenous leukemia prognosis and treatment response: a single-institution retrospective study. J Hematol Oncol. 2009;2:30.

    Article  PubMed  CAS  Google Scholar 

  37. Ahmad O, Boschi-Pinto C, Lopez A, et al. Age standardization of rates: a new WHO standard. GPE Discussion paper Series: No. 31. http://www.who.int/infobase/help. Accessed May, 2010.

  38. Ridell B, Carneskog J, Wedel H, et al. Incidence of chronic myeloproliferative disorders in the city of Göteborg, Sweden 1983–1992. Eur J Haematol. 2000;65:267–71.

    Article  PubMed  CAS  Google Scholar 

  39. Hasford J, Baccarani M, Hehlmann R, et al. Interferon-a and hydroxyurea in early chronic myeloid leukemia: a comparative analysis of the Italian and German chronic myeloid leukemia trials with interferon-a. Blood. 1996;88:5384–91.

    Google Scholar 

  40. Allan NC, Richards SM, Shepherd PC. UK Medical Research Council randomised, multicentre trial of interferon-alpha n1 for chronic myeloid leukaemia: improved survival irrespective of cytogenetic response. The UK medical research council’s working parties for therapeutic trials in adult leukaemia. Lancet. 1995;345:1392–7.

    Article  PubMed  CAS  Google Scholar 

  41. Micheli A, Mugno E, Krogh V, et al. Cancer prevalence in European registry areas. Ann Oncol. 2002;13:840–65.

    Article  PubMed  CAS  Google Scholar 

  42. Hochhaus A, O’Brien SG, Guilhot F, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid. Leukemia. 2009;23:1054–61.

    Article  PubMed  CAS  Google Scholar 

  43. Tardieu S, Brun-Strang C, Berthaud P, et al. Management of chronic myeloid leukemia in France: a multicentered cross-sectional study on 538 patients. Pharmacoepidemiol Drug Saf. 2005;14:545–53.

    Article  PubMed  Google Scholar 

  44. Verdecchia A, Baili P, Quaglia A, et al. Patient survival for all cancers combined as indicator of cancer control in Europe. Eur J Public Health. 2008;18:527–32.

    Article  PubMed  Google Scholar 

  45. Menzin J, Lang K, Earle CC, et al. Treatment patterns, outcomes and costs among elderly patients with chronic myeloid leukaemia: a population-based analysis. Drugs Aging. 2004;21(11):737–46.

    Article  PubMed  Google Scholar 

  46. Darkow T, Henk HJ, Thomas SK, et al. Treatment interruptions and non-adherence with imatinib and associated healthcare costs: a retrospective analysis among managed care patients with chronic myelogenous leukaemia. Pharmacoeconomics. 2007;25(6):481–96.

    Article  PubMed  CAS  Google Scholar 

  47. Dalziel K, Round A, Stein K, et al. Effectiveness and cost-effectiveness of imatinib for first-line treatment of chronic myeloid leukaemia in chronic phase: a systematic review and economic analysis. Health Technol Assess. 2004;8(28):iii, 1–120.

    PubMed  CAS  Google Scholar 

  48. Micheli A, Capocaccia R, Martinez C, et al. Cancer control in Europe: a proposed set of European cancer health indicators. Eur J Public Health. 2003;13:116–8.

    PubMed  Google Scholar 

  49. Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia. Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108:1809–20.

    Article  PubMed  CAS  Google Scholar 

  50. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27(35):6041–51.

    Article  PubMed  CAS  Google Scholar 

  51. Goldman J. Initial treatment for patients with CML. Hematology. 2009;1:453.

    Article  Google Scholar 

  52. Osborn M, Hughes T. Managing imatinib resistance in chronic myeloid leukaemia. Curr Opin Hematol. 2010;17(2):97–103.

    Article  PubMed  CAS  Google Scholar 

  53. Muller MC, Cross N, Erben P, et al. Harmonization of molecular monitoring of CML therapy in Europe. Leukemia. 2009;23:1957–63.

    Article  PubMed  CAS  Google Scholar 

  54. Hughes T, Branford S. Monitoring disease response to tyrosine kinase inhibitor therapy in CML. Hematology. 2009;1:461.

    Google Scholar 

  55. Pavlovsky C, Kantarjian H, Cortes J, et al. First-line therapy for chronic myeloid leukemia: past, present, and future. Am J Hematol. 2009;84(5):287–93.

    Article  PubMed  CAS  Google Scholar 

  56. Bixby D, Talpaz M. Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematology Am Soc Hematol Educ Program 2009;461–76.

    Google Scholar 

  57. Kantarjian HM, Cortes J, Guilhot F, et al. Diagnosis and management of chronic myeloid leukemia: a survey of American and European practice patterns. Cancer. 2007;109:1365–75.

    Article  PubMed  CAS  Google Scholar 

  58. Michallet M, Morra E, Steegmann J, et al. Imatnib resistance and/or intolerance in clinical practice in Europe: the “Unmet Needs in CML and Ph  +  ALL” (UNIC) Study. Blood (ASH Annual Meeting Abstracts) 2007; 110: Abstract 1951.

    Google Scholar 

  59. Morra E, Michallet M, Steegmann J, et al. Real-life rates of disease monitoring in clinical practice in Europe: the “Unmet Needs in CML and Ph  +  ALL” (UNIC) Study. Blood (ASH Annual Meeting Abstracts) 2007; 110: Abstract 1959.

    Google Scholar 

  60. Michallet M, Tulliez M, Corm S, et al. Management of chronic myeloid leukaemia in clinical practice in France: results of the French subset of patients from the UNIC study. Curr Med Res Opin. 2010;26(2):307–17.

    Article  PubMed  CAS  Google Scholar 

  61. Bristol-Myers Squibb. “It’s best to test” survey: an assessment of CML Monitoring across Europe; 2008.

    Google Scholar 

  62. Cortes J, Talpaz M, O’Brien S, et al. Effects of age on prognosis with imatinib mesylate therapy for patients with Philadelphia ­chromosome-positive chronic myelogenous leukemia. Cancer. 2003;98:1105–13.

    Article  PubMed  CAS  Google Scholar 

  63. Rosti G, Iacobucci I, Bassi S, et al. Impact of age on the outcome of patients with chronic myeloid leukemia in late chronic phase: results of a phase II study of the GIMEMA CML Working Party. Haematologica. 2007;92:101–5.

    Article  PubMed  Google Scholar 

  64. Hehlmann R, Heimpel H, Hasford J, et al. Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. Blood. 1994;84:4064–77.

    PubMed  CAS  Google Scholar 

  65. Xie Y, Davies SM, Xiang Y, Robison LL, Ross JA. Trends in leukemia incidence and survival in the United States (1973–1998). Cancer. 2003;97:2229–35.

    Article  PubMed  Google Scholar 

  66. Baccarani M, Rosti G, De Vivo A, et al. A randomized study of interferon-alpha versus interferon-alpha and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood. 2002;99:1527–35.

    Article  PubMed  CAS  Google Scholar 

  67. Bonifazi F, De Vivo A, Rosti G, et al. Chronic myeloid leukemia and interferon-alpha: a study of complete cytogenetic responders. Blood. 2001;98:3074–81.

    Article  PubMed  CAS  Google Scholar 

  68. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  PubMed  CAS  Google Scholar 

  69. Guilhot F, Chastang C, Michallet M, et al. Interferon alpha2b (IFN) combined with cytarabine versus interferon alone in chronic myelogenous leukemia. N Engl J Med. 1997;337:223–9.

    Article  PubMed  CAS  Google Scholar 

  70. Hasford J, Pfirrmann M, Hehlmann R, et al. A new prognostic score for the survival of patients with chronic myeloid leukemia treated with interferon alfa. J Natl Cancer Inst. 1998;90:850–8.

    Article  PubMed  CAS  Google Scholar 

  71. Hehlmann R, Berger U, Pfirrmann M, et al. Randomized comparison of interferon a and hydroxyurea with hydroxyurea monotherapy in chronic myeloid leukemia (CML-Study II): prolongation of survival by the combination of interferon a and hydroxyurea. Leukemia. 2003;17:1529–37.

    Article  PubMed  CAS  Google Scholar 

  72. Hehlmann R, Berger U, Pfirrmann M, et al. Drug treatment is superior to allografting as first line therapy in chronic myeloid leukemia. Blood. 2007;109:4686–92.

    Article  PubMed  CAS  Google Scholar 

  73. The Italian Cooperative Study Group on Chronic Myeloid Leukemia. Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med. 1994;330:820–5.

    Article  Google Scholar 

  74. The Benelux CML Study Group. Randomized study on hydroxyurea alone versus hydroxyurea combined with low-dose interferon-a2b for chronic myeloid leukemia. Blood. 1998;91:2713–21.

    Google Scholar 

  75. Kluin-Nelemans HC, Buck G, Le Cessie S, et al. Randomized comparison of low-dose versus high-dose interferon-alfa in chronic myeloid leukemia: prospective collaboration of 3 joint trials by the MRC and HOVON groups. Blood. 2004;103:4408–15.

    Article  PubMed  CAS  Google Scholar 

  76. Kantarjian HM, Talpaz M, O’Brien S, et al. Survival benefit with imatinib mesylate versus interferon alpha-based regimens in newly diagnosed chronic phase chronic myelogenous leukemia. Blood. 2006;108:1835–40.

    Article  PubMed  CAS  Google Scholar 

  77. Jabbour E, Daniel Jones D, Kantarjian HM, et al. Long-term outcome of patients with chronic myeloid leukemia treated with second-generation tyrosine kinase inhibitors after imatinib failure is predicted by the in vitro sensitivity of BCR-ABL kinase domain mutations. Blood. 2009;114(10):2037–43.

    Article  PubMed  CAS  Google Scholar 

  78. Saussele S, Lauseker M, Gratwohl A, et al. Allogeneic hematopoietic stem cell transplantation (allo SCT) for chronic myeloid leukemia in the imatinib era: evaluation of its impact within a subgroup of the randomized German CML Study IV. Blood. 2010;115(10):1880–5.

    Article  PubMed  CAS  Google Scholar 

  79. Palandri F, Castagnetti F, Iacobucci I, et al. The response to imatinib and interferon-{alpha} is more rapid than the response to imatinib alone: a retrospective analysis of 495 Philadelphia-positive chronic myeloid leukemia patients in early chronic phase. Haematologica. 2010;95(8):1415–9.

    Article  PubMed  CAS  Google Scholar 

  80. Berger U, Maywald O, Pfirrmann M, et al. Gender aspects in chronic myeloid leukemia: long-term results from randomized studies. Leukemia. 2005;19:984–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Hasford MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rohrbacher, M., Hasford, J. (2013). Etiology and Epidemiology of Chronic Myeloid Leukemia. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics