Skip to main content

Microvesicles and Their Emerging Role in Cellular Therapies for Organ and Tissue Regeneration

  • Chapter
  • First Online:
Emerging Concepts of Tumor Exosome–Mediated Cell-Cell Communication

Abstract

Microvesicles (MVs) are small, spherical membrane fragments shed from the cell surface or secreted from the endosomal compartment. MVs released from cells employed in regenerative medicine to rescue damaged tissues seem to play an important and underappreciated role in improving the function of damaged organs. A growing body of evidence suggests that MVs secreted from hematopoietic stem progenitor cells (HSPCs), multipotent stroma cells (MSCs), or cardiac stem cells (CSCs) employed in various treatment strategies in regenerative medicine may: (1) inhibit apoptosis of cells residing in the damaged tissues, (2) stimulate proliferation of cells that survive organ injury, and (3) stimulate vascularization of affected tissues. These proregenerative effects mediated by MVs are explained by the fact that these small, spherical membrane fragments: (1) are enriched in bioactive lipids (e.g., sphingosine-1-phosphate [S1P]), (2) may express antiapoptoic and prostimulatory growth factors or cytokines (e.g., vascular endothelial growth factor [VEGF], stem cell factor [SCF], or stromal derived factor-1 [SDF-1]) on their surface, and (3) may deliver mRNA, regulatory miRNA, and proteins to the damaged tissues that improve overall cell function. Based on these observations, the potential use of MVs, instead of whole cells, has become an exciting new concept in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA et al (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97:3075–3085

    Article  PubMed  CAS  Google Scholar 

  2. Janowska-Wieczorek A, Majka M, Ratajczak J et al (2001) Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cells 19:99–107

    Article  PubMed  CAS  Google Scholar 

  3. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  PubMed  CAS  Google Scholar 

  4. Vidulescu C, Clejan S, O’Connor K C (2004) Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J Cell Mol Med 8:388–396

    Article  PubMed  Google Scholar 

  5. George JN, Thoi LL, McManus LM et al (1982) Isolation of human platelet membrane microparticles from plasma and serum. Blood 60:834–839

    PubMed  CAS  Google Scholar 

  6. Ratajczak J, Wysoczynski M, Hayek F et al (2006) Membrane-derived microvesicles (MV): important and underappreciated mediators of cell to cell communication. Leukemia 20:1487–1495

    Article  PubMed  CAS  Google Scholar 

  7. Quesenberry PJ, Dooner MS, Aliotta JM (2010) Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp Hematol 38:581–592

    Article  PubMed  Google Scholar 

  8. Camussi G, Deregibus MC, Tetta C (2010) Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 19:7–12

    Article  PubMed  CAS  Google Scholar 

  9. Beaudoin AR, Grondin G (1991) Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena. Biochim Biophys Acta 1071:203

    Article  PubMed  CAS  Google Scholar 

  10. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol Aug 16(4):415–421

    Article  CAS  Google Scholar 

  11. Greenwalt TJ (2006) The how and why of exocytic vesicles. Transfusion 46(1):143–152

    Article  PubMed  Google Scholar 

  12. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20:22–27

    Article  CAS  Google Scholar 

  13. Barry OP, FitzGerald GA (1999) Mechanisms of cellular activation by platelet microparticles. Thromb Haemost 82:794–800

    PubMed  CAS  Google Scholar 

  14. Barry OP, Pratico D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interaction by platelet microparticles. J Clin Invest 102:136–144

    Article  PubMed  CAS  Google Scholar 

  15. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59(2):277–287

    Article  PubMed  CAS  Google Scholar 

  16. Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS (2004) New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 53(4):210–230

    Article  PubMed  CAS  Google Scholar 

  17. Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106:633–645

    Article  PubMed  CAS  Google Scholar 

  18. Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  PubMed  CAS  Google Scholar 

  19. Gatti S, Bruno S, Deregibus MC et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dialysis Transplant 26:1474–1483

    Article  CAS  Google Scholar 

  20. Spees JL, Olson SD, Whitney MJ et al (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103:1283–1288

    Article  PubMed  CAS  Google Scholar 

  21. Friedman RS, Krause DS (2009) Regeneration and repair: new findings in stem cell research and aging. Ann N Y Acad Sci 1172:88–94

    Article  PubMed  Google Scholar 

  22. Joyce N, Annett G, Wirthlin L et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5:933–946

    Article  PubMed  Google Scholar 

  23. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M et al (2008) Hunt for pluripotent stem cell—regenerative medicine search for almighty cell. J Autoimmun 30:151–162

    Article  PubMed  Google Scholar 

  24. O’Malley K, Scott EW (2004) Stem cell fusion confusion. Exp Hematol 32:131–134

    Article  PubMed  Google Scholar 

  25. Ratajczak MZ, Zuba-Surma E, Ratajczak J et al (2008) Very small embryonic like (VSEL) stem cells—characterization, developmental origin and biological significance. Exp Hematol 36:742–751

    Article  PubMed  CAS  Google Scholar 

  26. Tang XL, Rokosh DG, Guo Y et al (2010) Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction. Circ J 74:390–404

    Article  PubMed  Google Scholar 

  27. Tendera M, Wojakowski W, Ruzyłło W et al (2009) Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+  cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. Eur Heart J 30:1313–1321

    Article  PubMed  Google Scholar 

  28. Kucia M, Reca R, Campbell FR et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  29. Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE 5:e11803

    Google Scholar 

  30. Ratajczak MZ, Lee H, Wysoczynski M et al (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24:976–985

    Article  PubMed  CAS  Google Scholar 

  31. Aliotta JM, Sanchez-Guijo FM, Dooner GJ et al (2007) Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 25:2245–2256

    Article  PubMed  Google Scholar 

  32. Del Tatto M, Ng T, Aliotta JM et al (2011) Marrow cell genetic phenotype change induced by human lung cancer cells. Exp Hematol 39:1072–1080

    Article  PubMed  Google Scholar 

  33. Herrera MB, Fonsato V, Gatti S et al (2010) Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 14(6B):1605–1618

    Article  PubMed  CAS  Google Scholar 

  34. Paczkowska E, Kucia M, Koziarska D et al (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40:1237–1244

    Article  PubMed  CAS  Google Scholar 

  35. Ratajczak MZ, Kim CH, Abdel-Latif A et al (2012) A novel perspective on stem cell homing and mobilization—review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 26:63–72

    Article  PubMed  CAS  Google Scholar 

  36. Ratajczak J, Kijowski J, Majka M et al (2003) Biological significance of the different erythropoietic factors secreted by normal human early erythroid cells. Leuk Lymphoma 44:767–774

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01 DK074720, the Stella and Henry Endowment, and the European Union structural funds (Innovative Economy Operational Program POIG.01.01.02-00-109/09-00) to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ratajczak, M., Mierzejewska, K., Kucia, M., Greco, N., Ratajczak, J. (2013). Microvesicles and Their Emerging Role in Cellular Therapies for Organ and Tissue Regeneration. In: Zhang, HG. (eds) Emerging Concepts of Tumor Exosome–Mediated Cell-Cell Communication. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3697-3_10

Download citation

Publish with us

Policies and ethics