Skip to main content

Assessing TP53 Status in Human Tumors: Lessons from Breast Cancer

  • Chapter
  • First Online:
p53 in the Clinics

Abstract

Somatic mutations in the TP53 gene are frequently found in many types of cancer. Various methods have been developed in order to meet the challenges in assessing TP53 mutation status in human tumors and the most commonly used techniques will be presented to show the advancement and current trends. TP53 status is further discussed in the context of whole genome analysis, which may elucidate the TP53 network, uncover gene profiles to substitute previous mutation detection methods, and be more applicable in different aspects of clinical decision making. As breast cancer is one of the cancer diseases where TP53 mutation status shows the most significant prognostic impact and clinical potential, the chapter is based on experiences from research on this tumor type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aas T, Børresen AL, Geisler S, Smith-Sørensen B, Johnsen H, Varhaug JE, Akslen LA, Lønning PE (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811–814

    Article  PubMed  CAS  Google Scholar 

  • Alsner J, Jensen V, Kyndi M, Offersen BV, Vu P, Børresen-Dale AL, Overgaard J (2008) A comparison between p53 accumulation determined by immunohistochemistry and TP53 mutations as prognostic variables in tumours from breast cancer patients. Acta Oncol 47:600–607

    Article  PubMed  CAS  Google Scholar 

  • Barany F, Gelfand DH (1991) Cloning, overexpression and nucleotide sequence of a thermostable DNA ligase-encoding gene. Gene 109:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  PubMed  CAS  Google Scholar 

  • Bergamaschi A, Kim YH, Wang P, Sørlie T, Hernandez-Boussard T, Lønning PE, Tibshirani R, Børresen-Dale AL, Pollack JR (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Bertheau P, Turpin E, Rickman DS, Espié M, de Reyniès A, Feugeas JP, Plassa LF, Soliman H, Varna M, de Roquancourt A, Lehmann-Che J, Beuzard Y, Marty M, Misset JL, Janin A, de Thé H (2007) Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med 2007;4(3):e90. PMID:17388661

    Article  PubMed  CAS  Google Scholar 

  • Bonizzi G, Cicalese A, Insinga A, Pelicci PG (2011) The emerging role of p53 in stem cells. Trends Mol Med 18(1):6–12

    Article  PubMed  Google Scholar 

  • Bonnefoi H, Piccart M, Bogaerts J, Mauriac L, Fumoleau P, Brain E, Petit T, Rouanet P, Jassem J et al (2011) TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1–00): a randomised phase 3 trial. Lancet Oncol 12:527–539

    Article  PubMed  CAS  Google Scholar 

  • Børresen AL, Hovig E, Smith-Sørensen B, Malkin D, Lystad S, Andersen TI, Nesland JM, Isselbacher KJ, Friend SH (1991) Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc Natl Acad Sci USA 88:8405–8409

    Article  PubMed  Google Scholar 

  • Børresen-Dale AL, Lystad S, Langerød A (1997) Temporal temperature gradient gel electrophoresis on the DCode system. Bio Rad Bulletin 2133:12–13

    Google Scholar 

  • Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, Nguyen GH, Enerly E, Johnsen H, Buganim Y et al (2008) p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4:229

    Article  PubMed  Google Scholar 

  • Chen Z, Feng J, Buzin CH, Liu Q, Weiss L, Kernstine K, Somlo G, Sommer SS (2009) Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS One 4:e7220

    Article  PubMed  Google Scholar 

  • Chiaretti S, Tavolaro S, Marinelli M, Messina M, Del GI, Mauro FR, Santangelo S, Piciocchi A, Peragine N et al (2011) Evaluation of TP53 mutations with the AmpliChip p53 research test in chronic lymphocytic leukemia: correlation with clinical outcome and gene expression profiling. Genes Chromosomes Cancer 50:263–274

    PubMed  CAS  Google Scholar 

  • Chitemerere M, Andersen TI, Holm R, Karlsen F, Børresen AL, Nesland JM (1996) TP53 alterations in atypical ductal hyperplasia and ductal carcinoma in situ of the breast. Breast Cancer Res Treat 41:103–109

    Article  PubMed  CAS  Google Scholar 

  • Chrisanthar R, Knappskog S, Lokkevik E, Anker G, Ostenstad B, Lundgren S, Risberg T, Mjaaland I, Skjonsberg G et al (2011) Predictive and prognostic impact of TP53 mutations and MDM2 promoter genotype in primary breast cancer patients treated with epirubicin or paclitaxel. PLoS One 6:e19249

    Article  PubMed  CAS  Google Scholar 

  • Coutant C, Rouzier R, Qi Y, Lehmann-Che J, Bianchini G, Iwamoto T, Hortobagyi GN, Symmans WF, Uzan S et al (2011) Distinct p53 gene signatures are needed to predict prognosis and response to chemotherapy in ER-positive and ER-negative breast cancers. Clin Cancer Res 17:2591–2601

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CAJ, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  PubMed  CAS  Google Scholar 

  • Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178

    Article  PubMed  CAS  Google Scholar 

  • Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG, Rønneberg JA, Johnsen H, Navon R et al (2011) miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 6:e16915

    Article  PubMed  CAS  Google Scholar 

  • Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80:1579–1583

    Article  PubMed  CAS  Google Scholar 

  • Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappuis P, Sappino AP, Limacher IM, Bron L et al (1995) A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA 92:3963–3967

    Article  PubMed  CAS  Google Scholar 

  • Freed-Pastor WA, Mizuno H, Zhao X, Langerød A, Moon SH, Rodriguez-Barrueco R, Barsotti A, Chicas A, Li W et al (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–258

    Article  PubMed  CAS  Google Scholar 

  • Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769

    Article  PubMed  CAS  Google Scholar 

  • Glück S, Ross JS, Royce M, McKenna EF Jr, Perou CM, Avisar E, Wu L (2012) TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine ± trastuzumab. Breast Cancer Res Treat, Epub 2012;132(3):781–791. PMID:21373875

    Article  PubMed  CAS  Google Scholar 

  • Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T et al (2007) Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104:12129–12134

    Article  PubMed  CAS  Google Scholar 

  • Hardenbol P, Baner J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, Fakhrai-Rad H, Ronaghi M, Willis TD et al (2003) Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 21:673–678

    Article  PubMed  CAS  Google Scholar 

  • Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Yandell DW (1993) How sensitive is PCR-SSCP? Hum Mutat 2:338–346

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  • Holstege H, Horlings HM, Velds A, Langerød A, Børresen-Dale AL, van de Vijver MJ, Nederlof PM, Jonkers J (2010) BRCA1-mutated and basal-like breast cancers have similar aCGH profiles and a high incidence of protein truncating TP53 mutations. BMC Cancer 10:654

    Article  PubMed  CAS  Google Scholar 

  • Hovig E, Smith-Sørensen B, Brøgger A, Børresen AL (1991) Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection [published erratum appears in Mutat Res 1991 May;263(1):61]. Mutat Res 262:63–71

    Article  PubMed  CAS  Google Scholar 

  • Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I et al (2010) International network of cancer genome projects. Nature 464:993–998

    Article  PubMed  CAS  Google Scholar 

  • ICGC consortium (2010) International network of cancer genome projects. Nature 464:993–998

    Article  Google Scholar 

  • Ishioka C, Frebourg T, Yan YX, Vidal M, Friend SH, Schmidt S, Iggo R (1993) Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat Genet 5:124–129

    Article  PubMed  CAS  Google Scholar 

  • Jain AN, Chin K, Børresen-Dale AL, Erikstein BK, Eynstein LP, Kaaresen R, Gray JW (2001) Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc Natl Acad Sci USA 98:7952–7957

    Article  PubMed  CAS  Google Scholar 

  • Keller G, Hartmann A, Mueller J, Hofler H (2001) Denaturing high pressure liquid chromatography (DHPLC) for the analysis of somatic p53 mutations. Lab Invest 81:1735–1737

    Article  PubMed  CAS  Google Scholar 

  • Kringen P, Bergamaschi A, Due EU, Wang Y, Tagliabue E, Nesland JM, Nehman A, Tonisson N, Børresen-Dale AL (2005) Evaluation of arrayed primer extension for TP53 mutation detection in breast and ovarian carcinomas. Biotechniques 39:755–761

    Article  PubMed  CAS  Google Scholar 

  • Langerød A, Zhao H, Borgan O, Nesland J, Bukholm I, Ikdahl T, Kaaresen R, Børresen-Dale AL, Jeffrey SS (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9:R30

    Article  PubMed  Google Scholar 

  • Lerman LS, Silverstein K (1987) Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol 155:482–501

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Sommer SS (1995) Restriction endonuclease fingerprinting (REF): a sensitive method for screening mutations in long, contiguous segments of DNA. Biotechniques 18:470–477

    PubMed  CAS  Google Scholar 

  • Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226

    Article  PubMed  CAS  Google Scholar 

  • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555

    Article  PubMed  CAS  Google Scholar 

  • Mizuno H, Spike BT, Wahl GM, Levine AJ (2010) Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc Natl Acad Sci USA 107:22745–22750

    Article  PubMed  CAS  Google Scholar 

  • Naume B, Zhao X, Synnestvedt M, Borgen E, Russnes HG, Lingjaerde OC, Stromberg M, Wiedswang G, Kvalheim G et al (2007) Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol 1:160–171

    Article  PubMed  Google Scholar 

  • Nollau P, Wagener C (1997) Methods for detection of point mutations: performance and quality assessment. IFCC Scientific Division, Committee on Molecular Biology Techniques. Clin Chem 43:1114–1128

    PubMed  CAS  Google Scholar 

  • O’Donovan MC, Oefner PJ, Roberts SC, Austin J, Hoogendoorn B, Guy C, Speight G, Upadhyaya M, Sommer SS et al (1998) Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. Genomics 52:44–49

    Article  PubMed  Google Scholar 

  • Olivier M, Langerød A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R et al (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    Article  PubMed  CAS  Google Scholar 

  • Oshima K, Naoi Y, Kishi K, Nakamura Y, Iwamoto T, Shimazu K, Nakayama T, Kim SJ, Baba Y et al (2011) Gene expression signature of TP53 but not its mutation status predicts response to sequential paclitaxel and 5-FU/epirubicin/cyclophosphamide in human breast cancer. Cancer Lett 307:149–157

    Article  PubMed  CAS  Google Scholar 

  • Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  • Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629

    Article  PubMed  CAS  Google Scholar 

  • Piura E, Piura B (2010) Autoantibodies to tumor-associated antigens in breast carcinoma. J Oncol 2010:264926

    Article  PubMed  Google Scholar 

  • Rønneberg JA, Fleischer T, Solvang HK, Nordgard SH, Edvardsen H, Potapenko I, Nebdal D, Daviaud C, Gut I et al (2011) Methylation profiling with a panel of cancer related genes: association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer. Mol Oncol 5:61–76

    Article  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86:232–236

    Article  PubMed  CAS  Google Scholar 

  • Sørlie T (2004) Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 40:2667–2675

    Article  PubMed  Google Scholar 

  • Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  Google Scholar 

  • Sørlie T, Johnsen H, Vu P, Lind GE, Lothe R, Børresen-Dale AL (2004) Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis. methods mol biol 291:207–216

    Google Scholar 

  • Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Moriya T, Ishida T, Shibata H, Sasano H, Ohuchi N, Ishioka C (2008) Prediction of breast cancer prognosis by gene expression profile of TP53 status. Cancer Sci 99:324–332

    Article  PubMed  CAS  Google Scholar 

  • The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  Google Scholar 

  • Tonisson N, Zernant J, Kurg A, Pavel H, Slavin G, Roomere H, Meiel A, Hainaut P, Metspalu A (2002) Evaluating the arrayed primer extension -resequencing assay of TP53 tumor suppressor gene. Proc Natl Acad Sci USA 99:5503–5508

    Article  PubMed  CAS  Google Scholar 

  • Troester MA, Herschkowitz JI, Oh DS, He X, Hoadley KA, Barbier CS, Perou CM (2006) Gene expression patterns associated with p53 status in breast cancer. BMC Cancer 6:276

    Article  PubMed  Google Scholar 

  • Wilson JR, Bateman AC, Hanson H, An Q, Evans G, Rahman N, Jones JL, Eccles DM (2010) A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 47:771–774

    Article  PubMed  CAS  Google Scholar 

  • Yoshino K, Nishigaki K, Husimi Y (1991) Temperature sweep gel electrophoresis: a simple method to detect point mutations. Nucleic Acids Res 19:3153

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Muggerud AA, Vu P, Due EU, Sørlie T, Børresen-Dale AL, Warnberg F, Langerød A (2009) Full sequencing of TP53 identifies identical mutations within in situ and invasive components in breast cancer suggesting clonal evolution. Mol Oncol 3(3):214–219

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Langerød Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Langerød, A., Olivier, M., Børresen-Dale, AL. (2013). Assessing TP53 Status in Human Tumors: Lessons from Breast Cancer. In: Hainaut, P., Olivier, M., Wiman, K. (eds) p53 in the Clinics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3676-8_9

Download citation

Publish with us

Policies and ethics