Skip to main content

The Functional Significance of the Reptilian Heart: New Insights into an Old Question

  • Chapter
  • First Online:
Ontogeny and Phylogeny of the Vertebrate Heart

Abstract

The anatomy of the nonavian reptile heart allows for mixing of oxygen rich and oxygen poor blood (cardiac shunts). The degree and the direction of the cardiac shunts are under autonomic control and changes characteristically during the intermittent ventilation of the lungs. While cardiac shunts are detrimental to oxygen transport in the endothermic birds and mammals, the potential to control the amount of mixing of blood within the nonavian ventricle has often been considered a derived trait, conveying important physiological functions favored by natural selection. Although this notion was not supported by experimental evidence, the perception that cardiac shunts represent an adaptive (Darwinian) phenotypic trait permeates much of the comparative physiological literature. Over the past two decades, a growing body of evidence from computational models and a variety of experimental approaches examining this basic tenet has altered our view of the adaptive significance of circulatory “design” of the nonavian reptile heart. Here we review the results from the various approaches to understand the functional significance of cardiac shunting. The overall conclusion is that cardiac shunting is not an adaptive feature. In contrast, the evidence supports the alternative hypothesis that cardiac anatomy and resulting cardiac shunts in nonavian reptiles are plesiomorphic traits that do not negatively impact the primary function of the cardiovascular system. Future studies, focused on investigating the genetic regulatory networks that determine the diversity of cardiac morphologies, are proposed to hold the key to ultimately understand the evolution and functional significance of the vertebrate heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman RA, White FN (1979) Cyclic carbon dioxide exchange in the turtle Pseudemys scripta. Physiol Zool 52:378–389

    Google Scholar 

  • Almeida Marcos B, Araújo Claudio Gil S (2003) Effects of aerobic training on heart rate. Rev Bras Med Esporte 9(2):113–120. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922003000200006&lng=en. http://dx.doi.org/10.1590/S1517-86922003000200006. Accessed 02 Sept 2011

  • Arvedsen SK, Andersen JB, Zaar M, Andrade D, Abe AS, Wang T (2005) Arterial acid-base status during digestion and following vascular infusion of HCO3Na and HCl in the South American rattlesnake Crotalus durissus. Comp Biochem Physiol 142A:495–502

    CAS  Google Scholar 

  • Axelsson M, Franklin CE (2001) The calibre of the foramen of Panizza in Crocodylus porosus is variable and under andrenergic control. J Comp Physiol B Biochem Syst Environ Physiol 171:341–346

    Article  CAS  Google Scholar 

  • Axelsson M, Franklin CE, Lofman CO, Nilsson S, Grigg GC (1996) Dynamic anatomical study of cardiac shunting in crocodiles using high resolution angioscopy. J Exp Biol 199:359–365

    Article  CAS  Google Scholar 

  • Baker LA, White FN (1970) Redistribution of cardiac output in response to heating in Iguana iguana. Comp Biochem Physiol 35:253–262

    Article  Google Scholar 

  • Burggren WW (1985) Hemodynamics and regulation of central cardiovascular shunts in reptiles. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 121–142

    Google Scholar 

  • Burggren WW (1987) Form and function in reptilian circulations. Am Zool 27:5–19

    Google Scholar 

  • Burggren WW, Johansen K (1982) Ventricular hemodynamics in the monitor lizard Varanus exanthematicus: pulmonary and systemic pressure separation. J Exp Biol 96:343–354

    Google Scholar 

  • Burggren WW, Shelton G (1979) Gas exchange and transport during intermittent breathing in chelonian reptiles. J Exp Biol 8:75–92

    Google Scholar 

  • Burggren WW, Warburton SJ (1994) Patterns of form and function in developing hearts: contributions from non-mammalian vertebrates. Cardioscience 5:183–191

    PubMed  CAS  Google Scholar 

  • Burggren W, Smits A, Evans B (1989) Arterial O2 homeostasis during diving in the turtle Chelodina longicollis. Physiol Zool 62:668–686

    Google Scholar 

  • Busk M, Overgaard J, Hicks JW, Bennett AF, Wang T (2000) Effects of feeding on arterial blood gases in the American alligator Alligator mississippiensis. J Exp Biol 203:3117–3124

    PubMed  CAS  Google Scholar 

  • Butler, Milsom PJ, Woakes AJ (1984) Respiratory, cardiovascular and metabolic adjustments during steady state swimming in the green turtle, Chelonia mydas. J Comp Physiol B 154:167–174

    Article  Google Scholar 

  • Comeau SG, Hicks JW (1994) Regulation of central vascular blood flow in the turtle. Am J Physiol 267:R569–R578

    PubMed  CAS  Google Scholar 

  • Crossley D, Altimiras J, Wang T (1998) Hypoxia elicits an increase in pulmonary vascular resistance of anaesthetised turtles (Trachemys scripta). J Exp Biol 201:3367–3375

    PubMed  CAS  Google Scholar 

  • Eme J, Gwalthney J, Blank JM, Owerkowicz T, Barron G, Hicks JW (2009) Surgical removal of right-to-left cardiac shunt in the American alligator (Alligator mississippiensis) causes ventricular enlargement but does not alter apnoea or metabolism during diving. J Exp Biol 212:3553–3563

    Article  PubMed  Google Scholar 

  • Eme J, Gwalthney J, Owerkowicz T, Blank JM, Hicks JW (2010) Turning Crocodilian hearts into bird hearts: growth rates are similar for alligators with and without cardiac shunt. J Exp Biol 213:2673–2680

    Article  PubMed  Google Scholar 

  • Ewer RF (1950) Haemodynamic factors in the evolution of the double circulation in the vertebrates. Am Nat 84(816):215–220

    Article  Google Scholar 

  • Farmer CG, Hicks JW (2002) The intracardiac shunt as a source of myocardial oxygen in a turtle, Trachemys scripta. Int Comp Biol 42:208–215

    Article  CAS  Google Scholar 

  • Farmer CG, Uriona TJ, Olsen DB, Steenblick M, Sanders K (2008) The right-to-left shunt of crocodilians serves digestion. Physiol Biochem Zool 81:125–137

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP, Gamperl AK, Francis TB (1998) Comparative aspects of heart morphology. In: Gans C, Gaunt AS (eds) Biology of reptilia, vol 19: Morphology G: Visceral organs. Society for Study of Amphibians and Reptiles Press, Ithaca, New York, pp 375–424

    Google Scholar 

  • Galli G, Taylor EW, Wang T (2004) The cardiovascular responses of the freshwater turtle Trachemys scripta to warming and cooling. J Exp Biol 207:1471–1478

    Article  PubMed  Google Scholar 

  • Galli GLJ, Skovgaard N, Abe AS, Taylor EW, Wang T (2007) The adrenergic regulation of the cardiovascular system in the South American rattlesnake, Crotalus durissus Comp Biochem Physiology 148A:510–520

    Article  Google Scholar 

  • Gardner MN, Sterba-Boatwright B, Jones DR (2011) Ligation of the left aorta in alligators affects acid–base balance: a role for the R  →  L shunt. Resp Physiol Neurobiol 178:315–322

    Article  Google Scholar 

  • Grigg GC, Johansen K (1987) Cardiovascular dynamics in Crocodylus porosus breathing air and during voluntary aerobic dives. J Comp Physiol B Biochem Syst Environ Physiol 157:381–392

    Article  Google Scholar 

  • Hartzler LK, Munns SL, Bennett AF, Hicks JW (2006) Metabolic and blood gas dependence on digestive state in the Savannah monitor lizard Varanus exanthematicus: an assessment of the alkaline tide. J Exp Biol 209:1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Hicks JW (1994) Adrenergic and cholinergic regulation of intracardiac shunting. Physiol Zool 67:1325–1346

    Google Scholar 

  • Hicks JW (1998) Cardiac shunting in reptiles: mechanisms, regulation and physiological function. In: Gans C, Gaunt AS (eds) Biology of reptilia, vol 19: Morphology G: Visceral organs. Society for Study of Amphibians and Reptiles Press, Ithaca, New York, pp 425–483

    Google Scholar 

  • Hicks JW (2002) The physiological and evolutionary significance of cardiovascular shunting patterns in reptiles. News Physiol Sci 17:241–245

    PubMed  Google Scholar 

  • Hicks JW, Comeau SG (1994) Vagal regulation of intracardiac shunting in the turtle Pseudemys scripta. J Exp Biol 186:109–126

    PubMed  Google Scholar 

  • Hicks JW, Wang T (1996) Functional role of cardiac shunts in reptiles. J Exp Zool 275:204–216

    Article  Google Scholar 

  • Hicks JW, Wang T (1999) Hypoxic hypometabolism in the anesthetized turtle, Trachemys scripta. Am J Physiol 277:R18–R23

    PubMed  CAS  Google Scholar 

  • Hicks JW, Wang T (2004) Hypometabolism in reptiles: behavioural and physiological mechanisms that reduce aerobic demands. Resp Physiol Neurobiol 141:261–271

    Article  CAS  Google Scholar 

  • Hyman LH (1942) Comparative anatomy of vertebrates, 2nd edn. The University of Chicago, Chicago, p 346

    Google Scholar 

  • Ishimatsu A, Hicks JW, Heisler N (1988) Analysis of intracardiac shunting in the lizard, Varanus nilodicus: a new model based on blood oxygen levels and microsphere distribution. Respir Physiol 71:83–100

    Article  PubMed  CAS  Google Scholar 

  • Jensen B, Abe AS, Andrade DV, Nyengaard JR, Wang T (2010a) The heart of the South American rattlesnake, Crotalus durissus. J Morph 271:1066–1077

    Article  PubMed  Google Scholar 

  • Jensen B, Nyengaard JR, Pedersen M, Wang T (2010b) The anatomy of the python heart. Anat Sci Int 85:194–203

    Article  PubMed  Google Scholar 

  • Jensen B, Nielsen JM, Axelsson M, Pedersen M, Löfman C, Wang T (2010c) How the python heart separates pulmonary and systemic blood pressures and blood flows. J Exp Biol 213:1611–1617

    Article  PubMed  Google Scholar 

  • Jensen B, Larsen CK, Nielsen JM, Simonsen LS, Wang T (2011) Change of cardiac function, but not form, in postprandial pythons. Comp Biochem Physiol 160:35–42

    Article  CAS  Google Scholar 

  • Jones DR, Shelton G (1993) The physiology of the alligator heart-left aortic flow patterns and right-to-left shunts. J Exp Biol 176:247–269

    Google Scholar 

  • Kashyap HV (1959) The reptilian heart. Proc Natl Inst Sci India 26B:234–254

    Google Scholar 

  • Koshiba-Takeuchi K, Mori AD, Kaynak BL, Cebra-Thomas J, Sukonnik T, Georges RO, Latham S, Beck L, Beck L, Henkelman RM, Black BL, Olson EN, Wade J, Takeuchi JK, Nemer M, Gilbert SF, Bruneau BG (2009) Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature 461(7260):95–98

    Google Scholar 

  • Kraus C, Trillmich F, Kunkele J (2005) Reproduction and growth in a precocial small mammal Cavia magna. J Mammol 86:763–772

    Article  Google Scholar 

  • Krosniunas EH, Hicks JW (2003) Cardiac output and shunt during voluntary activity at different temperatures in the turtle, Trachemys scripta. Physiol Biochem Zool 76:679–694

    Article  PubMed  Google Scholar 

  • Lampert W, Trubetskova I (1996) Juvenile growth rate as a measure of fitness in Daphnia. Funct Ecol 10:631–635

    Article  Google Scholar 

  • Leite C (2011) Haemodynamic alterations due to ablation of control of the cardiac shunt in the South American rattlesnake, Crotalus durissus. In: Society for Experimental Biology Meeting, Glasgow, [A6.64]

    Google Scholar 

  • Malving M, Hicks JW, Greenee R (1995) Central vascular fiow patterns in the alligator Alligator niississipiensis. American J Physiol 38:R1133–1139

    Google Scholar 

  • Meyer A, Zardoya R (2003) Recent advances in the (molecular) phylogeny of vertebrates. Annu Rev Ecol Evol Syst 34:311–338

    Article  Google Scholar 

  • Mitchell GS, Gleeson TT, Bennett AF (1981) Pulmonary oxygen transport during activity in lizards. Respir Physiol 43:365–375

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Busk M, Hicks JW, Jensen FB, Wang T (1999) Respiratory consequences of feeding in the snake Python molorus. Comp Biochem Physiol 124A:359–365

    CAS  Google Scholar 

  • Owerkowicz T, Eme J, Gwalthney J, Blank JM, Hicks JW (2010) Cardiac shunting does not constrain aerobic capacity of the American alligator. Abstract P2.78, SICB Meeting, http://www.sicb.org/meetings/2010/schedule/abstractdetails.php3?id=1228

  • Platzack BR, Hicks JW (2001) Reductions in systemic oxygen delivery induce a hypometabolic state in the turtle Trachemys scripta. Am J Physiol 281:R1295–R1301

    CAS  Google Scholar 

  • Richner H (1989) Habitat-specific growth and fitness in Carrion crows (Corvus corone corone). J Anim Ecol 58:427–440

    Article  Google Scholar 

  • Secor SM, Hicks JW, Bennett AF (2000) Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion. J Exp Biol 203:2447–2454

    PubMed  CAS  Google Scholar 

  • Seymour RS, Bennett-Stamper CL, Johnston SD, Carrier DR, Grigg GC (2004) Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiol Biochem Zool 77(6):1051–1067

    Article  PubMed  Google Scholar 

  • Sinervo B, Adolph SC (1989) Thermal sensitivity of growth rate in hatchling Sceloporus lizards: environmental, behavioral and genetic aspects. Oecologica 78:411–419

    Article  Google Scholar 

  • Sinervo B, Basolo AL (1996) Testing adaptation with phenotypic manipulations. In: Rose MR, Lauder GV (eds) Evolutionary biology of adaptation. Academic, New York, pp 149–185

    Google Scholar 

  • Summers AP (2005) Evolution: warm-hearted crocs. Nature 434:834–844

    Article  Google Scholar 

  • Taylor EW, Andrade DV, Abe AS, Leite CAC, Wang T (2009) The unequal influence of the left and the right vagi on the control of the heart and pulmonary artery in the rattlesnake, Crotalus durissus. J Exp Biol 212:145–151

    Google Scholar 

  • Tucker VA (1966) Oxygen transport by the circulatory system of the green iguana (Iguana iguana) at different body temperatures. J Exp Biol 44:77–92

    Google Scholar 

  • Wang T, Hicks JW (1996) Cardiorespiratory synchrony in turtles. J Exp Biol 199:1791–1800

    PubMed  CAS  Google Scholar 

  • Wang T, Hicks JW (2002) An integrative model to predict maximum oxygen uptake of animals with central vascular shunts. Zoology 105:45–53

    Article  PubMed  Google Scholar 

  • Wang T, Krosniunas EH, Hicks JW (1997) The role of cardiac shunts in the regulation of arterial blood gases. Am Zool 37:12–22

    Google Scholar 

  • Wang T, Abe AS, Glass ML (1998) Effects of temperature on lung and blood gases in the South American rattlesnake Crotalus durissus terrificus. Comp Biochem Physiol A Physiol 121:7–11

    Article  Google Scholar 

  • Webb GJW (1979) Comparative cardiac anatomy of the Reptilian. III. The heart of crocodilians and a hypothesis on the completion of the interventricular septum of crocodilians and birds. J Morphol 161:221–240

    Article  Google Scholar 

  • Webb G, Heatwole H, Bavay J (1971) Comparative cardiac anatomy of the Reptilia. I. The chambers and septa of the varanid ventricle. J Morphol 134:335–350

    Article  PubMed  CAS  Google Scholar 

  • West NH, Butler PJ, Bevan RM (1992) Pulmonary blood flow at rest and during swimming in the green turtle, Chelonia mydas. Physiol Zool 65:287–310

    Google Scholar 

  • White FN (1988) Carbon dioxide homeostasis Wood SC (ed.), Comparatice Pulmonary Physiology: Current Concepts, Marcel Dekker, New York (1988), pp. 439–466

    Google Scholar 

  • White FN (1989) Carbon dioxide homeostasis. In: Wood SC (ed) Comparative pulmonary physiology: current concepts. Marcel Dekker, New York, pp 439–462

    Google Scholar 

  • White FN, Hicks JW, Ishimatsu A (1989) Respiratory states and intracardiac shunts in turtles. Am J Physiol 256:R240–R247

    PubMed  CAS  Google Scholar 

  • Wood SC (1984) Cardiovascular shunts and oxygen transport in lower vertebrates. Am J Physiol Regul Integr Comp Physiol 247:R240–R247

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Science Foundation and the Danish Research Council in their continued support investigating the cardiovascular ­system of reptiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Hicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hicks, J.W., Wang, T. (2012). The Functional Significance of the Reptilian Heart: New Insights into an Old Question. In: Sedmera, D., Wang, T. (eds) Ontogeny and Phylogeny of the Vertebrate Heart. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3387-3_9

Download citation

Publish with us

Policies and ethics