Skip to main content

Animal Models in Addiction Research

  • Chapter
  • First Online:
Drug Abuse and Addiction in Medical Illness

Abstract

Animal models have provided valuable insights into the brain mechanisms of drug ­addiction, including the elucidation of neural substrates that support the primary reinforcing effects of widely abused drugs such as cocaine and heroin and the long-term consequences of drug addiction for neurocognitive functioning. In recent years, considerable progress has been made in developing animal models that closely resemble the clinical features of drug addiction according to published diagnostic guidelines especially in the domain of compulsive drug use which represents the final stage of a progressive series of neural and psychological alterations induced by chronic drug exposure. In this chapter, we review a number of animal models used in addiction research and discuss their relevance and explanatory utility to the different stages of the addiction cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A positive reinforcer is a stimulus that increases the probability of a behaviour which results in the presentation of the stimulus. Thus, addictive drugs act as positive reinforcers, supporting instrumental responses over prolonged periods of time.

References

  1. Leshner AI. Addiction is a brain disease, and it matters. Science. 1997;278:45–7.

    PubMed  CAS  Google Scholar 

  2. Leshner AI. Addiction is a brain disease. Issues in Science and Technology 2001;17(3). http://www.issues.org/17.3/leshner.htm.

  3. Robinson T, Berridge K. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction. 2000;95:S91–S117.

    PubMed  Google Scholar 

  4. Everitt BJ, Dickinson A, Robbins TW, The neuropsychological basis of addictive behaviour. Brain Res Rev. 2001;36(2–3):129–38.

    PubMed  CAS  Google Scholar 

  5. Everitt BJ, Robbins TW, Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9.

    PubMed  CAS  Google Scholar 

  6. Goldstein R, Volkow N. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159(10):1642–52.

    PubMed  Google Scholar 

  7. Volkow N, Fowler J. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10(3):318–25.

    PubMed  CAS  Google Scholar 

  8. Kreek M, Laforge K, Butelman E. Pharmacotherapy of addictions. Nat Rev Drug Discov. 2002;1:710–26.

    PubMed  CAS  Google Scholar 

  9. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419–27.

    PubMed  CAS  Google Scholar 

  10. Weeks JR. Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science. 1962;138(3537):143–4.

    PubMed  CAS  Google Scholar 

  11. Kusayama T, Watanabe S. Reinforcing effects of methamphetamine in planarians. Neuroreport. 2000;11:2511–3.

    PubMed  CAS  Google Scholar 

  12. Li H, Chaney S, Roberts IJ, Forte M, Hirsh J. Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr Biol. 2000;10:211–4.

    PubMed  CAS  Google Scholar 

  13. Wolf F, Heberlein U. Invertebrate models of drug abuse. J Neurobiol. 2002;54:161–78.

    CAS  Google Scholar 

  14. Carney JM, Landrum RW, Cheng MS, Seale TW. Establishment of chronic intravenous drug self-administration in the C57BL/6J mouse. Neuroreport. 1991;2:477–80.

    PubMed  CAS  Google Scholar 

  15. Grahame NJ, Phillips TJ, Burkhart-Kasch S, Cunningham CL. Intravenous cocaine self-administration in the C57BL/6J mouse. Pharmacol Biochem Behav. 1995;51:827–34.

    PubMed  CAS  Google Scholar 

  16. Highfield DA, Mead AN, Grimm JW, Rocha BA, Shaham Y. Reinstatement of cocaine seeking in 129X1/SvJ mice: effects of cocaine priming, cocaine cues and food deprivation. Psychopharmacology (Berl). 2002;161:417–24.

    CAS  Google Scholar 

  17. Rocha BA, Scearce-Levie K, Lucas JJ, et al. Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature. 1998;393:175–8.

    PubMed  CAS  Google Scholar 

  18. van der Veen R, Koehl M, Abrous DN, de Kloet ER, Piazza PV, Deroche-Gamonet V. Maternal environment influences cocaine intake in adulthood in a genotype-dependent manner. PLoS ONE. 2008;3:e2245.

    PubMed  Google Scholar 

  19. Ettenberg A, Pettit HO, Bloom FE, Koob GF. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology. 1982;78(3):204–9.

    PubMed  CAS  Google Scholar 

  20. Pettit HO, Ettenberg A, Bloom FE, Koob GF. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl). 1984;84:167–73.

    CAS  Google Scholar 

  21. Pickens R, Harris WC. Self-administration of d-amphetamine by rats. Psychopharmacologia. 1968;12:158–63.

    PubMed  CAS  Google Scholar 

  22. De Wit H, Stewart J. Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology (Berl). 1981;75:134–43.

    Google Scholar 

  23. Risner ME, Goldberg SR. A comparison of nicotine and cocaine self-administration in the dog: fixed-ratio and progressive-ratio schedules of intravenous drug infusion. J Pharmacol Exp Ther. 1983;224:319–26.

    PubMed  CAS  Google Scholar 

  24. Deneau G, Yanagita T, Seevers MH. Self-administration of psychoactive substances by the monkey. Psychopharmacologia. 1969;16:30–48.

    PubMed  CAS  Google Scholar 

  25. Goldberg SR, Woods JH, Schuster CR. Morphine: conditioned increases in self-administration in rhesus monkeys. Science. 1969;166(3910):1306–7.

    PubMed  CAS  Google Scholar 

  26. Kelleher RT, Goldberg SR. Fixed-interval responding under second-order schedules of food presentation or cocaine injection. J Exp Anal Behav. 1977;28:221–31.

    PubMed  CAS  Google Scholar 

  27. Hoffmeister F. Progressive-ratio performance in the rhesus monkey maintained by opiate infusions. Psychopharmacology (Berl). 1979;62:181–6.

    CAS  Google Scholar 

  28. Rowlett JK, Wilcox KM, Woolverton WL. Self-administration of cocaine-heroin combinations by rhesus monkeys: antagonism by naltrexone. J Pharmacol Exp Ther. 1998;286:61–9.

    PubMed  CAS  Google Scholar 

  29. Panlilio LV, Goldberg SR, Gilman JP, Jufer R, Cone EJ, Schindler CW. Effects of delivery rate and non-contingent infusion of cocaine on cocaine self-administration in rhesus monkeys. Psychopharmacology (Berl). 1998;137:253–8.

    CAS  Google Scholar 

  30. Nader MA, Green KL, Luedtke RR, Mach RH. The effects of benzamide analogues on cocaine self-administration in rhesus monkeys. Psychopharmacology (Berl). 1999;147:143–52.

    CAS  Google Scholar 

  31. Tanda G, Munzar P, Goldberg SR. Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci. 2000;3:1073–4.

    PubMed  CAS  Google Scholar 

  32. Nader M, Morgan D, Gage H, et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci. 2006;9:1050–6.

    PubMed  CAS  Google Scholar 

  33. Panlilio LV, Thorndike EB, Schindler CW. Cocaine self-administration under variable-dose schedules in squirrel monkeys. Pharmacol Biochem Behav. 2006;84:235–43.

    PubMed  CAS  Google Scholar 

  34. Ahmed SH, Koob G. Transition from moderate to excessive drug intake: change in hedonic set point. Science. 1998;282(5387):298–300.

    PubMed  CAS  Google Scholar 

  35. Ahmed SH, Koob G. Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychophar­macology. 1999;146(3):303–12.

    PubMed  CAS  Google Scholar 

  36. Belin D, Balado E, Piazza PV, Deroche-Gamonet V. Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats. Biol Psychiatry. 2009;65:863–8.

    PubMed  CAS  Google Scholar 

  37. Belin D, Mar A, Dalley JW, Robbins TW, Everitt BJ. High impulsivity predicts the switch to compulsive cocaine-taking. Science. 2008;320:1352–5.

    PubMed  CAS  Google Scholar 

  38. Deroche-Gamonet V, Belin D, Piazza P. Evidence for addiction-like behavior in the rat. Science. 2004;305:1014–7.

    PubMed  CAS  Google Scholar 

  39. Pelloux Y, Everitt BJ, Dickinson A. Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology (Berl). 2007;194:127–37.

    CAS  Google Scholar 

  40. Vanderschuren L, Everitt BJ. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science. 2004;305(5686):1017–9.

    PubMed  CAS  Google Scholar 

  41. Geyer MA, Markou A, Bloom FE, Kupfer DJ. Animal models in psychatric disorders. Psychoparmacology: the fourth generation of progress. New York: Raven; 1995. p. 787–98.

    Google Scholar 

  42. Geyer MA, Markou A, Kenneth LD, Dennis C, Joseph TC, Charles N. The role of preclinical models in the development of psychotropic drugs. In: Davis KL, Charney D, Coyle JT, Nemeroff C, editors. Neuropsychopharmacology: the fifth generation of progress. New York: Lippincott Williams and Wilkins; 2002. p. 446–57.

    Google Scholar 

  43. Le Moal M. Modèles et psychopathologie Aspects théoriques. Encyclopédie Médico-Chirurgicale (Paris), Psychiatrie 1992; 37-040-C-10.

    Google Scholar 

  44. Koob GF, Moal ML. Neurobiology of addiction. London: Academic Press; 2005.

    Google Scholar 

  45. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res. 2008;199(1):89–102.

    PubMed  Google Scholar 

  46. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW. Review: Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3125–35.

    PubMed  Google Scholar 

  47. Everitt BJ, Robbins TW. Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology. 2000;153:17–30.

    PubMed  CAS  Google Scholar 

  48. Pelloux Y, Costentin J, Duterte-Boucher D. Differential effects of novelty exposure on place preference conditioning to amphetamine and its oral consumption. Psychopharmacology. 2004;171:277–85.

    PubMed  CAS  Google Scholar 

  49. Bardo M, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl). 2000;153:31–43.

    CAS  Google Scholar 

  50. Frenois F, Cador M, Caille S, Stinus L, Le Moine C. Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur J Neurosci. 2002;16:1377–89.

    PubMed  Google Scholar 

  51. Frenois F, Le Moine C, Cador M. The motivational component of withdrawal in opiate addiction: role of associative learning and aversive memory in opiate addiction from a behavioral, anatomical and functional perspective. Rev Neurosci. 2005;16:255–76.

    PubMed  CAS  Google Scholar 

  52. Rossi NA, Reid LD. Affective states associated with morphine injections. Physiol Psychol. 1976;4:269274.

    Google Scholar 

  53. Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12:227–462.

    PubMed  CAS  Google Scholar 

  54. Tzschentke T. Behavioral pharmacology of buprenorphine, with a focus on preclinical models of reward and addiction. Psychopharmacology. 2002;161:1–16.

    PubMed  CAS  Google Scholar 

  55. Bossert JM, Ghitza UE, Lu L, Epstein DH, Shaham Y. Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. Eur J Pharmacol. 2005;526:36–50.

    PubMed  CAS  Google Scholar 

  56. Spealman RD, Goldberg SR. Drug self-administration by laboratory animals: control by schedules of reinforcement. Annu Rev Pharmacol Toxicol. 1978;18:313–39.

    PubMed  CAS  Google Scholar 

  57. Goldberg SR, Kelleher RT, Morse WH. Second-order schedules of drug injection. Fed Proc. 1975;34:1771–6.

    PubMed  CAS  Google Scholar 

  58. Schindler CW, Panlilio LV, Goldberg SR. Second-order schedules of drug self-administration in animals. Psychopharmacology (Berl). 2002;163:327–44.

    CAS  Google Scholar 

  59. Stafford D, LeSage MG, Glowa JR. Progressive-ratio schedules of drug delivery in the analysis of drug self-administration: a review. Psychopharmacology. 1998;139(3):169–84.

    PubMed  CAS  Google Scholar 

  60. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA. 1988;85:5274–8.

    PubMed  Google Scholar 

  61. Wise RA. The role of reward pathways in the development of drug dependence. Pharmacol Ther. 1987;35:227–63.

    PubMed  CAS  Google Scholar 

  62. Wise RA, Bozarth MA. Brain mechanisms of drug reward and euphoria. Psychiatr Med. 1985;3:445–60.

    PubMed  CAS  Google Scholar 

  63. Wise RA, Bozarth MA. Brain substrates for reinforcement and drug self-administration. Prog Neuropsychopharmacol. 1981;5:467–74.

    PubMed  CAS  Google Scholar 

  64. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol. 2009;9(1):65–73.

    PubMed  CAS  Google Scholar 

  65. Berridge KC. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl). 2007;191:391–431.

    CAS  Google Scholar 

  66. Everitt BJ, Wolf ME. Psychomotor stimulant addiction: a neural systems perspective. J Neurosci. 2002;22(9):3312–20.

    PubMed  CAS  Google Scholar 

  67. Di Chiara G, Tanda G, Bassareo V, et al. Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann NY Acad Sci. 1999;877:461–85.

    PubMed  Google Scholar 

  68. Everitt BJ, Parkinson JA, Olmstead CM, Arroyo M, Robledo P, Robbins TW. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann NY Acad Sci. 1999;877:412–38.

    PubMed  CAS  Google Scholar 

  69. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98.

    PubMed  CAS  Google Scholar 

  70. Jones S, Bonci A. Synaptic plasticity and drug addiction. Curr Opin Pharmacol. 2005;5:20–5.

    PubMed  CAS  Google Scholar 

  71. Robbins TW, Everitt BJ. Drug addiction: bad habits add up. Nature. 1999;398:567–70.

    PubMed  CAS  Google Scholar 

  72. Thomas MJ, Kalivas P, Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol. 2008;154:327–42.

    PubMed  CAS  Google Scholar 

  73. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ. Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem. 2002;78:610–24.

    PubMed  CAS  Google Scholar 

  74. Kelly PH, Roberts DC. Effects of amphetamine and apomorphine on locomotor activity after 6-OHDA and electrolytic lesions of the nucleus accumbens septi. Pharmacol Biochem Behav. 1983;19:137–43.

    PubMed  CAS  Google Scholar 

  75. Robinson T, Kolb B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci. 1999;11:1598–604.

    PubMed  CAS  Google Scholar 

  76. Robinson T, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology. 2004;47 Suppl 1:33–46.

    PubMed  CAS  Google Scholar 

  77. Robinson T, Kolb B. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci. 1997;17:8491–7.

    PubMed  CAS  Google Scholar 

  78. Robinson T, Kolb B. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse. 1999;33:160–2.

    PubMed  CAS  Google Scholar 

  79. Kolb B, Gorny G, Li Y, Samaha AN, Robinson T. Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Acad Sci USA. 2003;100:10523–8.

    PubMed  CAS  Google Scholar 

  80. Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction. 2007;102 Suppl 1:16–32.

    PubMed  Google Scholar 

  81. Jedynak J, Uslaner J, Esteban J, Robinson T. Methamphetamine-induced structural plasticity in the dorsal striatum. Eur J Neurosci. 2007;25:847–53.

    PubMed  Google Scholar 

  82. Koob G, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97–129.

    PubMed  CAS  Google Scholar 

  83. Koob G, Le Moal M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci. 2005;8:1442–4.

    PubMed  CAS  Google Scholar 

  84. Koob G, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29–53.

    PubMed  Google Scholar 

  85. Nestler EJ. The neurobiology of cocaine addiction. Sci Pract Perspect. 2005;3:4–10.

    PubMed  Google Scholar 

  86. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8:1445–9.

    PubMed  CAS  Google Scholar 

  87. Nestler EJ. Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philos Trans R Soc Lond B Biol Sci. 2008;363:3245–55.

    PubMed  CAS  Google Scholar 

  88. Nestler EJ. Epigenetic mechanisms in psychiatry. Biol Psychiatry. 2009;65:189–90.

    PubMed  Google Scholar 

  89. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94:469–92.

    PubMed  CAS  Google Scholar 

  90. Robinson T, Berridge K. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18(3):247–91.

    PubMed  CAS  Google Scholar 

  91. Anthony JC, Warner LA, Kessler RC. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National comorbidity Survey. Exp Clin Psychopharmacol. 1994;2(3):244–68.

    Google Scholar 

  92. Segal DS, Weinberger SB, Cahill J, McCunney SJ. Multiple daily amphetamine administration: behavioral and neurochemical alterations. Science. 1980;207:904–7.

    PubMed  CAS  Google Scholar 

  93. Piazza PV, Deminiere JM, Le Moal M, Simon H. Factors that predict individual vulnerability to amphetamine self-administration. Science. 1989;245:1511–3.

    PubMed  CAS  Google Scholar 

  94. Lett BT. Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology (Berl). 1989;98:357–62.

    CAS  Google Scholar 

  95. Zarrindast MR, Ebrahimi-Ghiri M, Rostami P, Rezayof A. Repeated pre-exposure to morphine into the ventral pallidum enhances morphine-induced place preference: involvement of dopaminergic and opioidergic mechanisms. Behav Brain Res. 2007;181:35–41.

    PubMed  CAS  Google Scholar 

  96. Ferrario C, Robinson T. Amphetamine pretreatment accelerates the subsequent escalation of cocaine self-administration behavior. Eur Neuropsychopharmacol. 2007;17:352–7.

    PubMed  CAS  Google Scholar 

  97. Belin D, Deroche-Gamonet V, Jaber M. Cocaine-induced sensitization is associated with altered dynamics of transcriptional responses of the dopamine transporter, tyrosine hydroxylase, and dopamine D2 receptors in C57Bl/6 J mice. Psychopharmacology (Berl). 2007;193:567–78.

    CAS  Google Scholar 

  98. Pierce R, Kalivas P. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev. 1997;25(2):192–216.

    PubMed  CAS  Google Scholar 

  99. Robinson T, Becker JB. Behavioral sensitization is accompanied by an enhancement in amphetamine-stimulated dopamine release from striatal tissue in vitro. Eur J Pharmacol. 1982;85:253–4.

    PubMed  CAS  Google Scholar 

  100. Robinson T, Becker JB, Presty SK. Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res. 1982;253:231–41.

    PubMed  CAS  Google Scholar 

  101. Robinson T, Jurson PA, Bennett JA, Bentgen KM. Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Res. 1988;462:211–22.

    PubMed  CAS  Google Scholar 

  102. Schlaepfer TE, Pearlson GD, Wong DF, Marenco S, Dannals RF. PET study of competition between intravenous cocaine and [11C]raclopride at dopamine receptors in human subjects. Am J Psychiatry. 1997;154:1209–13.

    PubMed  CAS  Google Scholar 

  103. Vanderschuren L, Kalivas P. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology. 2000;151(2–3):99–120.

    PubMed  CAS  Google Scholar 

  104. Robinson T, Berridge K. Incentive-sensitization and addiction. Addiction. 2001;96:103–14.

    PubMed  CAS  Google Scholar 

  105. Robinson TE, Berridge KC. Addiction. Annu Rev Psychol. 2003;54:25–53.

    PubMed  Google Scholar 

  106. Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci. 2008;363:3137–46.

    PubMed  Google Scholar 

  107. Wyvell CL, Berridge K. Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci. 2001;21:7831–40.

    PubMed  CAS  Google Scholar 

  108. Nelson A, Killcross S. Amphetamine exposure enhances habit formation. J Neurosci. 2006;26:3805–12.

    PubMed  CAS  Google Scholar 

  109. Nordquist RE, Voorn P, de Mooij-van Malsen JG, Joosten RN, Pennartz CM, Vanderschuren LJ. Augmented reinforcer value and accelerated habit formation after repeated amphetamine treatment. Eur Neuropsychopharmacol. 2007;17:532–40.

    PubMed  CAS  Google Scholar 

  110. Beeler J, Cao Z, Kheirbek M, Zhuang X. Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology. 2008;34(5):1149–61.

    PubMed  Google Scholar 

  111. Yin H, Knowlton B, Balleine B. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci. 2004;19(1):181–9.

    PubMed  Google Scholar 

  112. Yin H, Knowlton B, Balleine B. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behav Brain Res. 2006;166:189–96.

    PubMed  Google Scholar 

  113. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology. 2003;168:3–20.

    PubMed  CAS  Google Scholar 

  114. Fuchs R. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci. 2006;26:3584–8.

    PubMed  CAS  Google Scholar 

  115. O’Brien CP. A range of research-based pharmacotherapies for addiction. Science. 1997;278(5335):66–70.

    PubMed  Google Scholar 

  116. Capriles N, Rodaros D, Sorge RE, Stewart J. A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl). 2003;168:66–74.

    CAS  Google Scholar 

  117. Fuchs R, Tran-Nguyen LT, Specio SE, Groff RS, Neisewander JL. Predictive validity of the extinction/reinstatement model of drug craving. Psychopharmacology (Berl). 1998;135:151–60.

    CAS  Google Scholar 

  118. Kalivas P, Mcfarland K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl). 2003;168:44–56.

    CAS  Google Scholar 

  119. De Wit H, Stewart J. Drug reinstatement of heroin-reinforced responding in the rat. Psychopharmacology (Berl). 1983;79:29–31.

    Google Scholar 

  120. See R, Elliott J, Feltenstein M. The role of dorsal vs ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats. Psychopharmacology. 2007;194:321–31.

    PubMed  CAS  Google Scholar 

  121. Ahmed SH, Walker JR, Koob G. Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology. 2000;22(4):413–21.

    PubMed  CAS  Google Scholar 

  122. Ahmed S, Cador M. Dissociation of psychomotor sensitization from compulsive cocaine consumption. Neuropsychopharmacology. 2006;31:563–71.

    PubMed  CAS  Google Scholar 

  123. Goldberg SR. Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. J Pharmacol Exp Ther. 1973;186:18–30.

    PubMed  CAS  Google Scholar 

  124. Goldberg SR, Morse WH, Goldberg DM. Behavior maintained under a second-order schedule by intramuscular injection of morphine or cocaine in rhesus monkeys. J Pharmacol Exp Ther. 1976;199:278–86.

    PubMed  CAS  Google Scholar 

  125. Goldberg SR, Kelleher RT, Goldberg DM. Fixed-ratio responding under second-order schedules of food presentation or cocaine injection. J Pharmacol Exp Ther. 1981;218:271–81.

    PubMed  CAS  Google Scholar 

  126. Tiffany ST. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol Rev. 1990;97:147–68.

    PubMed  CAS  Google Scholar 

  127. Arroyo M, Markou A, Robbins TW, Everitt BJ. Acquisition, maintenance and reinstatement of intravenous cocaine self-administration under a second-order schedule of reinforcement in rats: effects of conditioned cues and continuous access to cocaine. Psychopharmacology (Berl). 1998;140:331–44.

    CAS  Google Scholar 

  128. Belin D, Everitt BJ. Cocaine-seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron. 2008;57:432–41.

    PubMed  CAS  Google Scholar 

  129. Ito R, Dalley JW, Robbins TW, Everitt BJ. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci. 2002;22:6247–53.

    PubMed  CAS  Google Scholar 

  130. Ito R, Robbins TW, Everitt BJ. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci. 2004;7:389–97.

    PubMed  CAS  Google Scholar 

  131. Vanderschuren L. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci. 2005;25:8665–70.

    PubMed  CAS  Google Scholar 

  132. Lee J. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J Neurosci. 2006;26:10051–6.

    PubMed  CAS  Google Scholar 

  133. Burns LH, Robbins T, Everitt B. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Behav Brain Res. 1993;55:167–83.

    PubMed  CAS  Google Scholar 

  134. Cador M, Robbins TW, Everitt BJ. Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience. 1989;30(1):77–86.

    PubMed  CAS  Google Scholar 

  135. Everitt BJ, Cador M, Robbins TW. Interactions between the amygdala and ventral striatum in stimulus-reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience. 1989;30:63–75.

    PubMed  CAS  Google Scholar 

  136. Di Ciano P. Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci. 2004;24:7167–73.

    PubMed  Google Scholar 

  137. Everitt BJ, Hutcheson D, Ersche K, Pelloux Y, Dalley JW, Robbins TW. The orbital prefrontal cortex and drug addiction in laboratory animals and humans. Ann NY Acad Sci. 2007;1121:576–97.

    PubMed  CAS  Google Scholar 

  138. Hutcheson DM, Everitt BJ. The effects of selective orbitofrontal cortex lesions on the acquisition and performance of cue-controlled cocaine seeking in rats. Ann NY Acad Sci. 2003;1003:410–1.

    PubMed  Google Scholar 

  139. Di Ciano P, Everitt BJ. Contribution of the ventral tegmental area to cocaine-seeking maintained by a drug-paired conditioned stimulus in rats. Eur J Neurosci. 2004;19:1661–7.

    PubMed  Google Scholar 

  140. Haber S. The primate basal ganglia: parallel and integrative ­networks. J Chem Neuroanat. 2003;26:317–30.

    PubMed  Google Scholar 

  141. Haber S, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.

    PubMed  CAS  Google Scholar 

  142. Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev. 2007;56:27–78.

    PubMed  CAS  Google Scholar 

  143. DSM-IV APA. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association; 2000.

    Google Scholar 

  144. Cacciola J, Alterman A, O’Brien CP, Mclellan A. The addiction severity index in clinical efficacy trials of medications for cocaine dependence. NIDA Res Monogr. 1997;175:182–91.

    PubMed  CAS  Google Scholar 

  145. Kampman KM, Volpicelli JR, McGinnis DE, et al. Reliability and validity of the cocaine selective severity assessment. Addict Behav. 1998;23:449–61.

    PubMed  CAS  Google Scholar 

  146. Mclellan A, Kushner H, Metzger D, Peters R. The fifth edition of the addiction severity index. J Subst Abuse Treat. 1992;9(3):199–213.

    PubMed  CAS  Google Scholar 

  147. Rikoon S, Cacciola J, Carise D, Alterman A, Mclellan A. Predicting DSM-IV dependence diagnoses from addiction severity index composite scores. J Subst Abuse Treat. 2006;31:17–24.

    PubMed  Google Scholar 

  148. Kreek M, Nielsen D, Butelman E, Laforge K. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci. 2005;8:1450–7.

    PubMed  CAS  Google Scholar 

  149. Teichman M, Barnea Z, Rahav G. Sensation seeking, state and trait anxiety, and depressive mood in adolescent substance users. Int J Addict. 1989;24:87–99.

    PubMed  CAS  Google Scholar 

  150. Teichman M, Barnea Z, Ravav G. Personality and substance use among adolescents: a longitudinal study. Br J Addict. 1989;84:181–90.

    PubMed  CAS  Google Scholar 

  151. Adams JB, Heath AJ, Young SE, Hewitt JK, Corley RP, Stallings MC. Relationships between personality and preferred substance and motivations for use among adolescent substance abusers. Am J Drug Alcohol Abuse. 2003;29:691–712.

    PubMed  Google Scholar 

  152. Conway K, Swendsen JD, Rounsaville BJ, Merikangas KR. Personality, drug of choice, and comorbid psychopathology among substance abusers. Drug Alcohol Depend. 2002;65:225–34.

    PubMed  Google Scholar 

  153. Khantzian EJ. Psychiatric illness in drug abusers. N Engl J Med. 1980;302:869–70.

    PubMed  CAS  Google Scholar 

  154. Kilpatrick DG, Sutker PB, Roitzsch JC, Miller WC. Personality correlates of polydrug abuse. Psychol Rep. 1976;38:311–7.

    PubMed  CAS  Google Scholar 

  155. Moeller FG, Dougherty DM, Barratt ES, et al. Increased impulsivity in cocaine dependent subjects independent of antisocial personality disorder and aggression. Drug Alcohol Depend. 2002;68:105–11.

    PubMed  Google Scholar 

  156. Moss HB. Psychopathy, aggression, and family history in male veteran substance abuse patients: a factor analytic study. Addict Behav. 1989;14:565–70.

    PubMed  CAS  Google Scholar 

  157. Pomerleau CS, Pomerleau OF, Flessland KA, Basson SM. Relationship of Tridimensional Personality Questionnaire scores and smoking variables in female and male smokers. J Subst Abuse. 1992;4:143–54.

    PubMed  CAS  Google Scholar 

  158. Sarramon C, Verdoux H, Schmitt L, Bourgeois M. Addiction and personality traits: sensation seeking, anhedonia, impulsivity. Encephale. 1999;25:569–75.

    PubMed  CAS  Google Scholar 

  159. Schinka JA, Curtiss G, Mulloy JM. Personality variables and self-medication in substance abuse. J Pers Assess. 1994;63:413–22.

    PubMed  CAS  Google Scholar 

  160. Scourfield J, Stevens DE, Merikangas KR. Substance abuse, comorbidity, and sensation seeking: gender differences. Compr Psychiatry. 1996;37:384–92.

    PubMed  CAS  Google Scholar 

  161. Sher KJ, Bartholow BD, Wood MD. Personality and substance use disorders: a prospective study. J Consult Clin Psychol. 2000;68:818–29.

    PubMed  CAS  Google Scholar 

  162. Skinstad AH, Swain A. Comorbidity in a clinical sample of substance abusers. Am J Drug Alcohol Abuse. 2001;27:45–64.

    PubMed  CAS  Google Scholar 

  163. Wills TA, Vaccaro D, McNamara G. Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: an application of Cloninger’s theory. J Subst Abuse. 1994;6:1–20.

    PubMed  CAS  Google Scholar 

  164. Zuckerman M. Sensation seeking and the endogenous deficit theory of drug abuse. NIDA Res Monogr. 1986;74:59–70.

    PubMed  CAS  Google Scholar 

  165. Zuckerman M. P-impulsive sensation seeking and its behavioral, psychophysiological and biochemical correlates. Neuro­psy­chobiology. 1993;28:30–6.

    PubMed  CAS  Google Scholar 

  166. Zuckerman M, Neeb M. Sensation seeking and psychopathology. Psychiatry Res. 1979;1:255–64.

    PubMed  CAS  Google Scholar 

  167. Forsyth J. Anxiety sensitivity, controllability, and experiential avoidance and their relation to drug of choice and addiction severity in a residential sample of substance-abusing veterans. Addict Behav. 2003;28:851–70.

    PubMed  Google Scholar 

  168. O’Leary TA, Rohsenow DJ, Martin R, Colby SM, Eaton CA, Monti PM. The relationship between anxiety levels and outcome of cocaine abuse treatment. Am J Drug Alcohol Abuse. 2000;26:179–94.

    PubMed  Google Scholar 

  169. Roberts A. Psychiatric comorbidity in white and African-American illicit substance abusers: evidence for differential etiology. Clin Psychol Rev. 2000;20:667–77.

    PubMed  CAS  Google Scholar 

  170. Thomas McLellan A, Cacciola J, Alterman A, Rikoon S, Carise D. The addiction severity index at 25: origins, contributions and transitions. Am J Addict. 2006;15:113–24.

    PubMed  Google Scholar 

  171. Zilberman ML, Tavares H, Hodgins DC, el-Guebaly N. The impact of gender, depression, and personality on craving. J Addict Dis. 2007;26:79–84.

    PubMed  Google Scholar 

  172. Hanson KL, Luciana M, Sullwold K. Reward-related decision-making deficits and elevated impulsivity among MDMA and other drug users. Drug Alcohol Depend. 2008;96:99–110.

    PubMed  Google Scholar 

  173. Petry NM. Discounting of delayed rewards in substance abusers: relationship to antisocial personality disorder. Psychopharmacology (Berl). 2002;162:425–32.

    CAS  Google Scholar 

  174. Franques P, Auriacombe M, Tignol J. Addiction and personality. Encephale. 2000;26:68–78.

    PubMed  CAS  Google Scholar 

  175. Chandra PS, Krishna VA, Benegal V, Ramakrishna J. High-risk sexual behaviour & sensation seeking among heavy alcohol users. Indian J Med Res. 2003;117:88–92.

    PubMed  CAS  Google Scholar 

  176. Zuckerman M. Sensation seeking and behavior disorders. Arch Gen Psychiatry. 1988;45:502–4.

    PubMed  CAS  Google Scholar 

  177. Zuckerman M. The psychophysiology of sensation seeking. J Personal. 1990;58:313–45.

    CAS  Google Scholar 

  178. Hogg S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav. 1996;54:21–30.

    PubMed  CAS  Google Scholar 

  179. Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14:149–67.

    PubMed  CAS  Google Scholar 

  180. Pelloux Y, Costentin J, Duterte-Boucher D. Anxiety increases the place conditioning induced by cocaine in rats. Behav Brain Res. 2009;197:311–6.

    PubMed  CAS  Google Scholar 

  181. Homberg J, Van Den Akker M, Raaso H, et al. Enhanced motivation to self-administer cocaine is predicted by self-grooming behaviour and relates to dopamine release in the rat medial prefrontal cortex and amygdala. Eur J Neurosci. 2002;15:1542–50.

    PubMed  Google Scholar 

  182. Bush D, Vaccarino F. Individual differences in elevated plus-maze exploration predicted progressive-ratio cocaine self-administration break points in Wistar rats. Psychopharmacology. 2007;194:211–9.

    PubMed  CAS  Google Scholar 

  183. Henniger MS, Spanagel R, Wigger A, Landgraf R, Holter SM. Alcohol self-administration in two rat lines selectively bred for extremes in anxiety-related behavior. Neuropsychopharmacology. 2002;26:729–36.

    PubMed  CAS  Google Scholar 

  184. Spanagel R, Montkowski A, Allingham K, et al. Anxiety: a potential predictor of vulnerability to the initiation of ethanol self-administration in rats. Psychopharmacology (Berl). 1995;122:369–73.

    CAS  Google Scholar 

  185. Chakroun N, Doron J, Swendsen J. Substance use, affective ­problems and personality traits: test of two association models. Encephale. 2004;30:564–9.

    PubMed  CAS  Google Scholar 

  186. Stewart SH, Karp J, Pihl RO, Peterson RA. Anxiety sensitivity and self-reported reasons for drug use. J Subst Abuse. 1997;9:223–40.

    PubMed  CAS  Google Scholar 

  187. Bardo M, Donohew RL, Harrington NG. Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res. 1996;77(1–2):23–43.

    PubMed  CAS  Google Scholar 

  188. Hooks MS, Jones GH, Smith AD, Neill DB, Justice JB. Individual differences in locomotor activity and sensitization. Pharmacol Biochem Behav. 1991;38:467–70.

    PubMed  CAS  Google Scholar 

  189. Piazza PV, Rouge-Pont F, Deminiere JM, Kharoubi M, Le Moal M, Simon H. Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Res. 1991;567:169–74.

    PubMed  CAS  Google Scholar 

  190. Misslin R, Cigrang M. Does neophobia necessarily imply fear or anxiety? Behav Process. 1986;12:45–50.

    Google Scholar 

  191. Klebaur JE, Bevins RA, Segar TM, Bardo M. Individual differences in behavioral responses to novelty and amphetamine self-administration in male and female rats. Behav Pharmacol. 2001;12(4):267–75.

    PubMed  CAS  Google Scholar 

  192. Bardo M, Neisewander JL, Pierce R. Novelty-induced place preference behavior in rats: effects of opiate and dopaminergic drugs. Pharmacol Biochem Behav. 1989;32:683–9.

    PubMed  CAS  Google Scholar 

  193. Klebaur JE, Bardo M. Individual differences in novelty seeking on the playground maze predict amphetamine conditioned place preference. Pharmacol Biochem Behav. 1999;63:131–6.

    PubMed  CAS  Google Scholar 

  194. Bardo MT, Bowling SL, Robinet PM, Rowlett JK, Lacy M, Mattingly BA. Role of dopamine D1 and D2 receptors in novelty-maintained place preference. Exp Clin Psychopharmacol. 1993;1:101–9.

    CAS  Google Scholar 

  195. Zuckerman M, Link K. Construct validity for the sensation-seeking scale. J Consult Clin Psychol. 1968;32:420–6.

    PubMed  CAS  Google Scholar 

  196. Zuckerman M, Bone RN, Neary R, Mangelsdorff D, Brustman B. What is the sensation seeker? Personality trait and experience correlates of the Sensation-Seeking Scales. J Consult Clin Psychol. 1972;39:308–21.

    PubMed  CAS  Google Scholar 

  197. Schooler C, Zahn TP, Murphy DL, Buchsbaum MS. Psychological correlates of monoamine oxidase activity in normals. J Nerv Ment Dis. 1978;166:177–86.

    PubMed  CAS  Google Scholar 

  198. Beck LH, Bransome ED, Mirsky AF, Rosvold HE, Sarason I. A continuous performance test of brain damage. J Consult Psychol. 1956;20:343–50.

    PubMed  CAS  Google Scholar 

  199. Bari A, Dalley JW, Robbins TW. The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat Protoc. 2008;3(5):759–67.

    PubMed  CAS  Google Scholar 

  200. Robbins TW. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharma­cology. 2002;163(3–4):362–80.

    PubMed  CAS  Google Scholar 

  201. Dalley JW, Cardinal R, Robbins JW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev. 2004;28:771–84.

    PubMed  CAS  Google Scholar 

  202. Dalley JW, Mar A, Economidou D, Robbins TW. Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav. 2008;90:250–60.

    PubMed  CAS  Google Scholar 

  203. Dalley JW, Fryer T, Brichard L, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315:1267–70.

    PubMed  CAS  Google Scholar 

  204. Diergaarde L, Pattij T, Poortvliet I, et al. Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry. 2008;63:301–8.

    PubMed  CAS  Google Scholar 

  205. Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ. High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychiatry. 2009;65(10):851–6.

    PubMed  CAS  Google Scholar 

  206. Deminiere JM, Piazza PV, Le Moal M, Simon H. Experimental approach to individual vulnerability to psychostimulant addiction. Neurosci Biobehav Rev. 1989;13:141–7.

    PubMed  CAS  Google Scholar 

  207. O’Brien CP, Mclellan A. Myths about the treatment of addiction. Lancet. 1996;347:237–40.

    PubMed  Google Scholar 

  208. Stewart J, De Wit H. Reinstatement of drug taking behaviour as a method of assessing incentive motivational properties of drugs. In: Bozarth MA, editor. Assessing drug reinforcement. New York: Springer; 1987. p. 12.

    Google Scholar 

  209. Gawin FH. Cocaine abuse and addiction. J Fam Pract. 1989;29:193–7.

    PubMed  CAS  Google Scholar 

  210. Gawin FH. Cocaine addiction: psychology and neurophysiology. Science. 1991;251:1580–6.

    PubMed  CAS  Google Scholar 

  211. Lenoir M, Ahmed S. Heroin-induced reinstatement is specific to compulsive heroin use and dissociable from heroin reward and sensitization. Neuropsychopharmacology. 2007;32:616–24.

    PubMed  CAS  Google Scholar 

  212. Shalev U, Grimm JW, Shaham Y. Neurobiology of relapse to ­heroin and cocaine seeking: a review. Pharmacol Rev. 2002;54(1):1–42.

    PubMed  CAS  Google Scholar 

  213. Piazza PV, Deminiere JM, Maccari S, Mormede P, Le Moal M, Simon H. Individual reactivity to novelty predicts probability of amphetamine self-administration. Behav Pharmacol. 1990;1:339–45.

    PubMed  Google Scholar 

  214. Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology. 2009;56 Suppl 1:18–31.

    PubMed  CAS  Google Scholar 

  215. Shen H, Toda S, Moussawi K, Bouknight A, Zahm D, Kalivas P. Altered dendritic spine plasticity in cocaine-withdrawn rats. J Neurosci. 2009;29:2876–84.

    PubMed  CAS  Google Scholar 

  216. Sarti F, Borgland SL, Kharazia VN, Bonci A. Acute cocaine exposure alters spine density and long-term potentiation in the ventral tegmental area. Eur J Neurosci. 2007;26:749–56.

    PubMed  Google Scholar 

  217. Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA. 2006;103:3399–404.

    PubMed  CAS  Google Scholar 

  218. Li Y, Acerbo M, Robinson T. The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens. Eur J Neurosci. 2004;20:1647–54.

    PubMed  Google Scholar 

  219. Norrholm SD, Bibb JA, Nestler EJ, Ouimet CC, Taylor JR, Greengard P. Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience. 2003;116:19–22.

    PubMed  CAS  Google Scholar 

  220. Robinson T, Gorny G, Mitton E, Kolb B. Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse. 2001;39:257–66.

    PubMed  CAS  Google Scholar 

  221. Koob GF, Nestler EJ. The neurobiology of drug addiction. J Neuropsychiatry Clin Neurosci. 1997;9:482–97.

    PubMed  CAS  Google Scholar 

  222. Volkow ND, Wang GJ, Fowler JS, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature. 1997;386:830–3.

    PubMed  CAS  Google Scholar 

  223. Koob G, Weiss F. Neuropharmacology of cocaine and ethanol dependence. Recent Dev Alcohol. 1992;10:201–33.

    PubMed  CAS  Google Scholar 

  224. Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry. 2005;57:1377–84.

    PubMed  CAS  Google Scholar 

  225. Bassareo V, Tanda G, Di Chiara G. Increase of extracellular dopamine in the medial prefrontal cortex during spontaneous and naloxone-precipitated opiate abstinence. Psychopharmacology (Berl). 1995;122:202–5.

    CAS  Google Scholar 

  226. Bechara A, Damasio H. Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002;40:1675–89.

    PubMed  Google Scholar 

  227. Bechara A, Dolan S, Hindes A. Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia. 2002;40:1690–705.

    PubMed  Google Scholar 

  228. Briand LA, Flagel S, Garcia-Fuster MJ, et al. Persistent ­alterations in cognitive function and prefrontal dopamine D2 receptors following extended, but not limited, access to self-administered cocaine. Neuropsychopharmacology. 2008;33(12):2969–80.

    PubMed  CAS  Google Scholar 

  229. Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology. 2009;56 Suppl 1:177–85.

    PubMed  CAS  Google Scholar 

  230. Porrino L, Lyons D. Orbital and medial prefrontal cortex and psychostimulant abuse: studies in animal models. Cereb Cortex. 2000;10:326–33.

    PubMed  CAS  Google Scholar 

  231. Porrino L, Domer FR, Crane AM, Sokoloff L. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats. Neuropsychopharmacology. 1988;1:109–18.

    PubMed  CAS  Google Scholar 

  232. Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B. Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci. 2004;19:1997–2002.

    PubMed  Google Scholar 

  233. Winstanley CA, LaPlant Q, Theobald DE, et al. DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. J Neurosci. 2007;27:10497–507.

    PubMed  CAS  Google Scholar 

  234. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–69.

    PubMed  CAS  Google Scholar 

  235. Koob G, Moal ML. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52–8.

    PubMed  CAS  Google Scholar 

  236. Schoenbaum G, Roesch M, Stalnaker T. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 2006;29:116–24.

    PubMed  CAS  Google Scholar 

  237. Schoenbaum G, Shaham Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry. 2008;63(3):256–62.

    PubMed  CAS  Google Scholar 

  238. Dickinson A, Wood N, Smith J. Alcohol seeking by rats: action or habit? Q J Exp Psychol Sect B. 2002;55:331–48.

    Google Scholar 

  239. Miles F, Everitt B, Dickinson A. Oral cocaine seeking by rats: action or habit? Behav Neurosci. 2003;117:927–38.

    PubMed  Google Scholar 

  240. Porrino L. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci. 2004;24:3554–62.

    PubMed  CAS  Google Scholar 

  241. Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino L. Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci. 2001;21:2799–807.

    PubMed  CAS  Google Scholar 

  242. Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology. 1999;146(4):373–90.

    PubMed  CAS  Google Scholar 

  243. Hester R, Garavan H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci. 2004;24:11017–22.

    PubMed  CAS  Google Scholar 

  244. Kirby KN, Petry NM. Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction. 2004;99:461–71.

    PubMed  Google Scholar 

  245. Black Y. Altered attention and prefrontal cortex gene expression in rats after binge-like exposure to cocaine during adolescence. J Neurosci. 2006;26:9656–65.

    PubMed  CAS  Google Scholar 

  246. Calu D, Stalnaker T, Franz T, Singh T, Shaham Y, Schoenbaum G. Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn Mem. 2007;14:325–8.

    PubMed  Google Scholar 

  247. Dalley J, Lääne K, Pena Y, Theobald D, Everitt B, Robbins T. Attentional and motivational deficits in rats withdrawn from intravenous self-administration of cocaine or heroin. Psychopharmacology. 2005;182:579–87.

    PubMed  CAS  Google Scholar 

  248. Dalley J, Theobald D, Berry D, et al. Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentional performance. Neuropsycho­pharmacology. 2005;30:525–37.

    PubMed  CAS  Google Scholar 

  249. George O, Mandyam C, Wee S, Koob G. Extended access to cocaine self-administration produces long-lasting prefrontal ­cortex-dependent working memory impairments. Neuropsycho­pharmacology. 2008;33:2474–82.

    PubMed  CAS  Google Scholar 

  250. Paine T, Olmstead M. Cocaine disrupts both behavioural inhibition and conditional discrimination in rats. Psychopharmacology (Berl). 2004;175:443–50.

    CAS  Google Scholar 

  251. Paine TA, Dringenberg HC, Olmstead MC. Effects of chronic cocaine on impulsivity: relation to cortical serotonin mechanisms. Behav Brain Res. 2003;147:135–47.

    PubMed  CAS  Google Scholar 

  252. Schoenbaum G. Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal-amygdalar function. Cereb Cortex. 2004;15:1162–9.

    PubMed  Google Scholar 

  253. Bolla KI, Eldreth DA, London ED, et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. NeuroImage. 2003;19:1085–94.

    PubMed  CAS  Google Scholar 

  254. Porrino L, Smith HR, Nader MA, Beveridge TJ. The effects of cocaine: a shifting target over the course of addiction. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1593–600.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

DB is funded by the INSERM, the IREB, the FRM and an INSERM AVENIR Grant, and this work was supported by the IREB. JW Dalley acknowledges support from the UK Medical Research Council. The authors would like to thank Pr Barry J. Everitt for insightful discussions and constructive comments on previous versions of this Ms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Belin .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

The authors declare they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Belin, D., Dalley, J.W. (2012). Animal Models in Addiction Research. In: Verster, J., Brady, K., Galanter, M., Conrod, P. (eds) Drug Abuse and Addiction in Medical Illness. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3375-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3375-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3374-3

  • Online ISBN: 978-1-4614-3375-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics