Skip to main content

Selective Fast Pyrolysis of Biomass to Produce Fuels and Chemicals

  • Chapter
  • First Online:
Advanced Biofuels and Bioproducts

Abstract

Selective fast pyrolysis, differed from traditional fast pyrolysis which is usually aimed at the maximum bio-oil yield, is to selectively control or alter biomass pyrolytic pathways for obtaining specific products (high-grade liquid fuels or special chemicals). Fast pyrolysis of biomass can be regarded as the pyrolysis of its three major components, mainly including the following three pathways. The decomposition of lignin mainly produces various monomeric phenolic compounds as well as oligomers (pyrolytic lignins). The depolymerization of holocellulose (cellulose and hemicellulose) mainly generates anhydro-oligosaccharides, monomeric anhydrosugars (mainly levoglucosan), furans, and other products. The pyrolytic ring scission of holocellulose obtains various light products, such as hydroxyacetaldehyde and acetol. The pyrolytic pathways and the subsequent products are influenced by a number of factors, including the biomass type, feedstock properties, pyrolysis conditions (pyrolysis temperature, heating rate, vapor residence time, pressure, gaseous environment), catalysts, vapor filtration, and condensation. Therefore, selective fast pyrolysis can be achieved via proper control of these factors, such as biomass pretreatment or catalyst utilization. This chapter reviews the mechanisms and pathways of biomass pyrolysis, as well as the properties and applications of crude bio-oils. It also summarizes the recent advances in the selective fast pyrolysis of biomass, aiming at how to produce quality-improved liquid fuels, and specific chemicals such as levoglucosan, levoglucosenone, acetic acid, hydroxyacetaldehyde, furfural, 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one, and phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achladas GE (1991) Analysis of biomass pyrolysis liquids—separation and characterization of phenols. J Chromatogr 542:263–275

    Article  CAS  Google Scholar 

  2. Adam J, Blazso M, Meszaros E, Stocker M, Nilsen MH, Bouzga A, Hustad JE, Gronli M, Oye G (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84:1494–1502

    CAS  Google Scholar 

  3. Adam J, Antonakou E, Lappas A, Stocker M, Nilsen MH, Bouzga A, Hustad JE, Oye G (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Micropor Mesopor Mat 96:93–101

    Article  CAS  Google Scholar 

  4. Adjaye JD, Bakhshi NN (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. 1. Conversion over various catalysts. Fuel Process Technol 45:161–183

    Article  CAS  Google Scholar 

  5. Adjaye JD, Katikaneni SPR, Bakhshi NN (1996) Catalytic conversion of a biofuel to hydrocarbons: effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution. Fuel Process Technol 48:115–143

    Article  CAS  Google Scholar 

  6. Alen R, Kuoppala E, Oesch P (1996) Formation of the main degradation compound groups from wood and its components during pyrolysis. J Anal Appl Pyrol 36:137–148

    Article  CAS  Google Scholar 

  7. Amen-Chen C, Pakdel H, Roy C (1997) Separation of phenols from Eucalyptus wood tar. Biomass Bioenergy 13:25–37

    Article  CAS  Google Scholar 

  8. Antonakou E, Lappas A, Nilsen MH, Bouzga A, Stocker M (2006) Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 85:2202–2212

    Article  CAS  Google Scholar 

  9. Ates F, Isikdag MA (2009) Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel 88:1991–1997

    Article  CAS  Google Scholar 

  10. Badri B (2008) The influence of reactive dyes on the pyrolysis of cotton. J Anal Appl Pyrol 81: 162–166

    Article  CAS  Google Scholar 

  11. Bailliez V, Olesker A, Cleophax J (2004) Synthesis of polynitrogenated analogues of glucopyranoses from levoglucosan. Tetrahedron 60:1079–1085

    Article  CAS  Google Scholar 

  12. Bayerbach R, Nguyen VD, Schurr U, Meier D (2006) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin)—Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and Py-FIMS. J Anal Appl Pyrol 77:95–101

    Article  CAS  Google Scholar 

  13. Bayerbach R, Meier D (2009) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: structure elucidation of oligomeric molecules. J Anal Appl Pyrol 85:98–107

    Article  CAS  Google Scholar 

  14. Bennett NM, Helle SS, Duff SJB (2009) Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresour Technol 100:6059–6063

    Article  CAS  Google Scholar 

  15. Boutin O, Ferrer M, Lede J (1998) Radiant flash pyrolysis of cellulose—evidence for the formation of short life time intermediate liquid species. J Anal Appl Pyrol 47:13–31

    Article  CAS  Google Scholar 

  16. Bridgwater A (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29:285–295

    Article  CAS  Google Scholar 

  17. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  18. Chen MQ, Wang J, Zhang MX, Chen MG, Zhu XF, Min FF, Tan ZC (2008) Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl Pyrol 82:145–150

    Article  CAS  Google Scholar 

  19. Chum HL, Kreibich RE (1992) Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast-pyrolysis oils. US 5091499

    Google Scholar 

  20. Deng L, Yan Z, Fu Y, Guo QX (2009) Green solvent for flash pyrolysis oil separation. Energ Fuel 23:3337–3338

    Article  CAS  Google Scholar 

  21. Di Blasi C, Branca C, Galgano A (2007) Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Ind Eng Chem Res 46:430–438

    Article  Google Scholar 

  22. Di Blasi C, Branca C, Galgano A (2008) Products and global weight loss rates of wood decomposition catalyzed by zinc chloride. Energ Fuel 22:663–670

    Article  Google Scholar 

  23. Di Blasi C, Galgano A, Branca C (2009) Effects of potassium hydroxide impregnation on wood pyrolysis. Energ Fuel 23:1045–1054

    Article  Google Scholar 

  24. Di Blasi C, Galgano A, Branca C (2009) Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. Ind Eng Chem Res 48:3359–3369

    Article  Google Scholar 

  25. Dobele G, Rossinskaja G, Telysheva G, Meier D, Faix O (1999) Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J Anal Appl Pyrol 49:307–317

    Article  CAS  Google Scholar 

  26. Dobele G, Meier D, Faix O, Radtke S, Rossinskaja G, Telysheva G (2001) Volatile products of catalytic flash pyrolysis of celluloses. J Anal Appl Pyrol 58:453–463

    Article  Google Scholar 

  27. Dobele G, Dizhbite T, Rossinskaja G, Telysheva G, Mier D, Radtke S, Faix O (2003) Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis—a promising method for obtaining 1,6-anhydrosaccharides in high yields. J Anal Appl Pyrol 68–9:197–211

    Article  Google Scholar 

  28. Dobele G, Rossinskaja G, Diazbite T, Telysheva G, Meier D, Faix O (2005) Application of catalysts for obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J Anal Appl Pyrol 74:401–405

    Article  CAS  Google Scholar 

  29. Encinar JM, Beltran FJ, Ramiro A, Gonzalez JF (1997) Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment. Ind Eng Chem Res 36:4176–4183

    Article  CAS  Google Scholar 

  30. Encinar JM, Beltran FJ, Ramiro A (1998) Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Process Technol 55:219–233

    Article  CAS  Google Scholar 

  31. Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy Fuel 1:123–137

    Article  CAS  Google Scholar 

  32. Fabbri D, Torri C, Baravelli V (2007) Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study. J Anal Appl Pyrol 80:24–29

    Article  CAS  Google Scholar 

  33. Fabbri D, Torri C, Mancini I (2007) Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block. Green Chem 9:1374–1379

    Article  CAS  Google Scholar 

  34. Fu QR, Argyropoulos DS, Tilotta DC, Lucia LA (2008) Understanding the pyrolysis of CCA-treated wood. Part I. Effect of metal ions. J Anal Appl Pyrol 81:60–64

    Article  CAS  Google Scholar 

  35. Fu QR, Argyropoulos DS, Tilotta DC, Lucia LA (2008) Understanding the pyrolysis of CCA-treated wood. Part II. Effect of phosphoric acid. J Anal Appl Pyrol 82:140–144

    Article  CAS  Google Scholar 

  36. Furneaux RH, Mason JM, Miller I (1988) A novel hydroxylactone from the Lewis acid catalyzed pyrolysis of cellulose. J Chem Soc Perkin Trans 1:49–51

    Article  Google Scholar 

  37. Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C (2007) Characterization of bio-oils in chemical families. Biomass Bioenergy 31:222–242

    Article  CAS  Google Scholar 

  38. Garcia-Perez M, Wang S, Shen J, Rhodes M, Lee WJ, Li CZ (2008) Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass. Energ Fuel 22:2022–2032

    Article  CAS  Google Scholar 

  39. Garham RG, Underwood GL (1993) Method of using fast pyrolysis liquids as liquid smoke. WO9105484

    Google Scholar 

  40. Giroux R, Freel B, Graham R (2001) Novel natural resin formulations. US6326461

    Google Scholar 

  41. Halpern Y, Riffer R, Broido A (1973) Levoglucosenone (1,6-Anhydro-3,4-dideoxy-D3-β-D-Pyranosen-2-one). A major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates. J Org Chem 38:204–209

    Article  CAS  Google Scholar 

  42. Himmelblau A (1991) Method and apparatus for producing water-soluble resin and resin product made by that method. US5034498

    Google Scholar 

  43. Horne PA, Williams PT (1996) Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields. Fuel 75:1043–1050

    Article  CAS  Google Scholar 

  44. Howard J, Longley C, Morrison A, Fung D (1993) Process for isolating levoglucosan from pyrolysis liquids. CA2084906

    Google Scholar 

  45. Klampfl CW, Breuer G, Schwarzinger C, Koll B (2006) Investigations on the effect of metal ions on the products obtained from the pyrolysis of cellulose. Acta Chim Slov 53:437–443

    CAS  Google Scholar 

  46. Lanza R, Nogare DD, Canu P (2009) Gas phase chemistry in cellulose fast pyrolysis. Ind Eng Chem Res 48:1391–1399

    Article  CAS  Google Scholar 

  47. Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107

    Article  CAS  Google Scholar 

  48. Lomax JA, Commandeur JM, Arisz PW, Boon JJ (1991) Characterization of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose. J Anal Appl Pyrol 19:65–79

    Article  CAS  Google Scholar 

  49. Lu Q, Xiong WM, Li WZ, Guo QX, Zhu XF (2009) Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds. Bioresour Technol 100:4871–4876

    Article  CAS  Google Scholar 

  50. Lu Q, Li WZ, Zhang D, Zhu XF (2009) Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of sawdust with Al/SBA-15 catalysts. J Anal Appl Pyrol 84:131–138

    Article  CAS  Google Scholar 

  51. Lu Q, Tang Z, Zhang Y, Zhu XF (2010) Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts. Ind Eng Chem Res 49:2573–2580

    Article  CAS  Google Scholar 

  52. Lu Q, Zhang Y, Tang Z, Li WZ, Zhu XF (2010) Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts. Fuel 89(8):2096–2103. doi:10.1016/j.fuel.2010.02.030

    Article  CAS  Google Scholar 

  53. Mahfud FH, van Geel FP, Venderbosch RH, Heeres HJ (2008) Acetic acid recovery from fast pyrolysis oil. An exploratory study on liquid-liquid reactive extraction using aliphatic tertiary amines. Sep Sci Technol 43:3056–3074

    Article  CAS  Google Scholar 

  54. Marshall JA (2008) An improved preparation of levoglucosenone from cellulose. Iowa State University, Master thesis

    Google Scholar 

  55. Miftakhov MS, Valeev FA, Gaisina IN (1994) Levoglucosenone: the properties, reactions, and use in fine organic synthesis. Russ Chem Rev 63:869–882

    Article  Google Scholar 

  56. Miftakhov MS, Ermolenko MS, Gaisina IN, Kuznetsov OM, Selezneva NK, Yusupova ZA, Muslukhov RR (2001) Chemistry of natural compounds, bioorganic, and biomolecular chemistry—synthesis of a C(9)-C(13) fragment of acutiphycin from levoglucosan. Russ Chem Bull 50:1101–1106

    Article  CAS  Google Scholar 

  57. Moens L (1994) Isolation of levoglucosan from pyrolysis oil derived from cellulose. WO9405704

    Google Scholar 

  58. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuel 20:848–889

    Article  CAS  Google Scholar 

  59. Murwanashyaka JN, Pakdel H, Roy C (2001) Step-wise and one-step vacuum pyrolysis of birch-derived biomass to monitor the evolution of phenols. J Anal Appl Pyrol 60:219–231

    Article  CAS  Google Scholar 

  60. Murwanashyaka JN, Pakdel H, Roy C (2001) Separation of syringol from birch wood-derived vacuum pyrolysis oil. Sep Purif Technol 24:155–165

    Article  CAS  Google Scholar 

  61. NikAzar M, Hajaligol MR, Sohrabi M, Dabir B (1997) Mineral matter effects in rapid pyrolysis of beech wood. Fuel Process Technol 51:7–17

    Article  CAS  Google Scholar 

  62. Nilsen MH, Antonakou E, Bouzga A, Lappas A, Mathisen K, Stocker M (2007) Investigation of the effect of metal sites in Me-Al-MCM-41 (Me = Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass. Micropor Mesopor Mat 105:189–203

    Article  CAS  Google Scholar 

  63. Nowakowski DJ, Jones JM, Brydson RMD, Ross AB (2007) Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 86:2389–2402

    Article  CAS  Google Scholar 

  64. Nowakowski DJ, Woodbridge CR, Jones JM (2008) Phosphorus catalysis in the pyrolysis behaviour of biomass. J Anal Appl Pyrol 83:197–204

    Article  CAS  Google Scholar 

  65. Oasmaa A, Kuoppala E, Solantausta Y (2003) Fast pyrolysis of forestry residue. 2. Physicochemical composition of product liquid. Energy Fuel 17:433–443

    Article  CAS  Google Scholar 

  66. Ohnishi A, Kato K, Takagi E (1975) Curie-point pyrolysis of cellulose. Polym J 7:431–437

    Article  CAS  Google Scholar 

  67. Olazar M, Aguado R, Bilbao J, Barona A (2000) Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst. AlChE J 46:1025–1033

    Article  CAS  Google Scholar 

  68. Pan WP, Richards GN (1989) Influence of metal ions on volatile products of pyrolysis of wood. J Anal Appl Pyrol 16:117–126

    Article  CAS  Google Scholar 

  69. Pappa A, Mikedi K, Tzamtzis N, Statheropoulos M (2006) TG-MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components. J Therm Anal Calorim 84:655–661

    Article  CAS  Google Scholar 

  70. Pattiya A, Titiloye JO, Bridgwater AV (2008) Fast pyrolysis of cassava rhizome in the presence of catalysts. J Anal Appl Pyrol 81:72–79

    Article  CAS  Google Scholar 

  71. Piskorz J, Radlein D, Scott DS (1986) On the mechanism of the rapid pyrolysis of cellulose. J Anal Appl Pyrol 9:121–137

    Article  CAS  Google Scholar 

  72. Piskorz J, Radlein D, Scott DS, Czernik S (1989) Pretreatment of wood and cellulose for production of sugars by fast pyrolysis. J Anal Appl Pyrol 16:127–142

    Article  CAS  Google Scholar 

  73. Piskorz J, Majerski P, Radlein D, Vladars-Usas A, Scott DS (2000) Flash pyrolysis of cellulose for production of anhydro-oligomers. J Anal Appl Pyrol 56:145–166

    Article  CAS  Google Scholar 

  74. Ponder GR, Richards GN (1991) Thermal synthesis and pyrolysis of a xylan. Carbohydr Res 218:143–155

    Article  CAS  Google Scholar 

  75. Pouwels AD, Eijkel GB, Arisz PW, Boon JJ (1989) Evidence for oligomers in pyrolysates of microcrystalline cellulose. J Anal Appl Pyrol 15:71–84

    Article  Google Scholar 

  76. Prins MJ, Ptasinski KJ, Janssen F (2006) Torrefaction of wood—Part 2. Analysis of products. J Anal Appl Pyrol 77:35–40

    Article  CAS  Google Scholar 

  77. Qi WY, Hu CW, Li GY, Guo LH, Yang Y, Luo J, Miao X, Du Y (2006) Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chem 8:183–190

    Article  CAS  Google Scholar 

  78. Radlein D, Grinshpun A, Piskorz J, Scott DS (1987) On the presence of anhydro-oligosaccharides in the sirups from the fast pyrolysis of cellulose. J Anal Appl Pyrol 12:39–49

    Article  CAS  Google Scholar 

  79. Radlein D, Piskorz J, Scott DS (1991) Fast pyrolysis of natural polysaccharides as a potential Industrial-process. J Anal Appl Pyrol 19:41–63

    Article  CAS  Google Scholar 

  80. Roy C, Lu X, Pakdel H (2000) Process for the production of phenolic-rich pyrolysis oils for use in making phenol-formaldehyde resole resins. US6143856

    Google Scholar 

  81. Scott DS, Piskorz J, Radlein D, Majerski P (1996) Process for the production of anhydrosugars from lignin and cellulose containing biomass by pyrolysis. US5395455

    Google Scholar 

  82. Sarotti AM, Spanevello RA, Suarez AG (2007) An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach. Green Chem 9:1137–1140

    Article  CAS  Google Scholar 

  83. Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. J Anal Appl Pyrol 60:41–54

    Article  CAS  Google Scholar 

  84. Scholze B, Hanser C, Meier D (2001) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part II. GPC, carbonyl groups, and C-13-NMR. J Anal Appl Pyrol 58:387–400

    Article  Google Scholar 

  85. Shafizadeh F, Lai YZ (1972) Thermal degradation of 1,6-anhydro-β-D-glucopyranose. J Org Chem 37:278–284

    Article  CAS  Google Scholar 

  86. Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrol 3:283–305

    Article  CAS  Google Scholar 

  87. Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100:6496–6504

    Article  CAS  Google Scholar 

  88. Shen DK, Gu S, Bridgwater AV (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. J Anal Appl Pyrol 87:199–206

    Article  CAS  Google Scholar 

  89. Shimada N, Kawamoto H, Saka S (2008) Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. J Anal Appl Pyrol 81:80–87

    Article  CAS  Google Scholar 

  90. Stradal JA, Underwood GL (1995) Process for producing hydroxyacetaldehyde. US5393542

    Google Scholar 

  91. Torri C, Lesci IG, Fabbri D (2009) Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. J Anal Appl Pyrol 85:192–196

    Article  CAS  Google Scholar 

  92. Torri C, Lesci IG, Fabbri D (2009) Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate. J Anal Appl Pyrol 84:25–30

    Article  CAS  Google Scholar 

  93. Wan YQ, Chen P, Zhang B, Yang CY, Liu YH, Lin XY, Ruan R (2009) Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. J Anal Appl Pyrol 86:161–167

    Article  CAS  Google Scholar 

  94. Wang C, Hao QL, Lu DQ, Ja QZ, Li GJ, Xu B (2008) Production of light aromatic hydrocarbons from biomass by catalytic pyrolysis. Chin J Catal 29:907–912

    Article  CAS  Google Scholar 

  95. Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25:493–513

    Article  CAS  Google Scholar 

  96. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Amsterdam

    Google Scholar 

  97. Zhang HY, Xiao R, Wang DH, Zhong ZP, Song M, Pan QW, He GY (2009) Catalytic fast pyrolysis of biomass in a fluidized bed with fresh and spent fluidized catalytic cracking (FCC) catalysts. Energy Fuels 23:6199–6206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-feng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhu, Xf., Lu, Q. (2013). Selective Fast Pyrolysis of Biomass to Produce Fuels and Chemicals. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_10

Download citation

Publish with us

Policies and ethics