Skip to main content

Tuff Ring

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Small circular cones with low profile flanks and with wide relatively shallow central crater with a relatively simple map view outline.

Description

In a broad sense, tuff rings commonly refer to any ring-like low-profile small volume volcanic edifices with wide craters where their crater floor is above the syn-eruptive surface.

Tuff ring craters are typically surrounded by pyroclastic beds dip radially away from the crater in low angle (<25° on Earth) and rarely traceable more than a km away from the crater rim (Kereszturi and Németh 2013; Németh 2010a; Vespermann and Schmincke 2000; Wohletz and Sheridan 1983).

Tuff ring crater rim deposits are dominated by dune-bedded, laminar tuff beds that are intercalated with coarser grained tuff brecias and lapilli tuffs in proximal to the vent that beds are laterally discontinuous (Heiken 1971; Kereszturi and Németh 2013; Németh et al. 2012a; Wohletz and Sheridan 1983).

Morphometry

Tuff rings have normally low topographic profiles and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affleck DK, Cassidy J, Locke CA (2001) Te Pouhawaiki Volcano and pre-volcanic topography in central Auckland: volcanological and hydrogeological implications. New Zeal J Geol Geophys 44(2):313–321

    Article  Google Scholar 

  • Allen SR, Bryner VF, Smith IEM, Ballance PF (1996) Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand. N.Z. J Geol Geophys 39:309–327

    Article  Google Scholar 

  • Austin-Erickson A, Ort MH, Carrasco-Nunez G (2011) Rhyolitic phreatomagmatism explored: tepexitl tuff ring (Eastern Mexican Volcanic Belt). J Volcanol Geotherm Res 201(1–4):325–341

    Article  Google Scholar 

  • Brand BD, White CM, Anonymous (2004) Base-surge mechanics and structures, an example from Sinker Butte, ID, western Snake River plain. Abstracts with Programs – Geol Soc Am 36(4):84–84

    Google Scholar 

  • Brooker MR, Houghton BF, Wilson CJN, Gamble JA (1993) Pyroclastic phases of a rhyolitic dome-building eruption; Puketarata tuff ring, Taupo volcanic zone, New Zealand. Bull Volcanol 55(6):395–406

    Article  Google Scholar 

  • Brown RJ, Kokelaar BP, Branney MJ (2007) Widespread transport of pyroclastic density currents from a large silicic tuff ring: the Glaramara tuff, Scafell caldera, English Lake District, UK. Sedimentology 54(5):1163–1190

    Article  Google Scholar 

  • Brož P, Hauber E (2013) Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. J Geophys Res Planet 118:1656–1675. doi:10.1002/jgre.20120

    Google Scholar 

  • Buettner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J Geophys Res 107(B11):14–14

    Google Scholar 

  • Cagnoli B, Ulrych TJ (2001) Ground penetrating radar images of unexposed climbing dune- forms in the Ubehebe hydrovolcanic field (Death Valley, California). J Volcanol Geotherm Res 109(4):279–298

    Article  Google Scholar 

  • Cassidy J, France SJ, Locke CA (2007) Gravity and magnetic investigation of maar volcanoes, Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 159(1–3):153–163

    Article  Google Scholar 

  • Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–1135

    Article  Google Scholar 

  • Dellino P, Liotino G (2002) The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. J Volcanol Geotherm Res 113(1–2):1–18

    Article  Google Scholar 

  • Dellino P, Isaia R, La Volpe L, Orsi G (2004a) Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy). J Volcanol Geotherm Res 133(1–4):193–210

    Article  Google Scholar 

  • Dellino P, Isaia R, Veneruso M (2004b) Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 133(1–4):211–228

    Article  Google Scholar 

  • Eichelberger JC, Vogel TA, Younker LW, Miller CD, Heiken GH, Wohletz KH (1988) Structure and stratigraphy beneath a young phreatic vent: South Inyo Crater, Long Valley Caldera, California. J Geophys Res 93(B11):13208–13220

    Article  Google Scholar 

  • Gencalioglu-Kuscu G, Atilla C, Cas RAF, Kuscu I (2007) Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar). J Volcanol Geotherm Res 159(1–3):198–209

    Article  Google Scholar 

  • Gutmann JT (2002) Strombolian and effusive activity as precursors to phreatomagmatism; eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J Volcanol Geotherm Res 113(1–2):345–356

    Article  Google Scholar 

  • Gutmann JT, Sheridan M (1978) Geology ofthe Pinacate volcanic field. Arizona Bur Geol Mining Tech Spec Paper 2:47–59

    Google Scholar 

  • Heiken GH (1971) Tuff rings: examples from the Fort Rock-Christmas Lake Valley Basin, South-Central Oregon. J Geophys Res 76(23):5615–5626

    Article  Google Scholar 

  • Houghton BF, Schmincke HU (1989) Rothenberg cinder cone, East Eifel; a complex strombolian and phreatomagmatic volcano. Bull Volcanol 52(1):28–48

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism; a case study from New Zealand. J Volcanol Geotherm Res 91(1):97–120

    Google Scholar 

  • Kereszturi G, Németh K (2013) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology – new advances in understanding volcanic systems. inTech Open, Rijeka. http://dx.doi.org/10.5772/51387

  • Lajoie J, Lanzafame G, Rossi PL, Tranne CA (1992) Lateral facies variations in hydromagmatic pyroclastic deposits at Linosa, Italy. J Volcanol Geotherm Res 54:135–143

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Martin U, Németh K (2005) Eruptive and depositional history of a Pliocene tuff ring that developed in a fluvio-lacustrine basin: Kissomlyó volcano (western Hungary). J Volcanol Geotherm Res 147(3–4):342–356

    Article  Google Scholar 

  • Martin U, Nemeth K (2006) Eruptive mechanism of phreatomagmatic volcanoes from the Pinacate volcanic field: comparison between Crater Elegante and Cerro Colorado. Mexico Z dt Ges Geowiss 157(3):451–466

    Google Scholar 

  • McGill GE (2002) The small domes and pits of Cydonia Mensae and adjacent Acidalia Planitia, Mars: implications for the role of near-surface water or ice. Lunar Planet Sci XXXIII, abstract #1126, Houston

    Google Scholar 

  • Németh K (2010a) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. Geol Soc Am Special Paper 470:43–66

    Article  Google Scholar 

  • Németh K (2010b) Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation. Central Eur J Geosci 2(3):399–419

    Google Scholar 

  • Németh K, Cronin S, Haller MJ, Brenna M, Csillag G (2010) Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields. Central Eur J Geosci 2(3):339–361

    Google Scholar 

  • Németh K, Cronin SJ, Smith IEM, Flores JA (2012a) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74(9):2121–2137

    Article  Google Scholar 

  • Németh K, Risso C, Nullo F, Smith IEM, Pecskay Z (2012b) Facies architecture of an isolated long-lived, nested polygenetic silicic tuff ring erupted in a braided river system: the Los Loros volcano, Mendoza, Argentina. J Volcanol Geotherm Res 239:33–48

    Article  Google Scholar 

  • Risso C, Németh K, Combina AM, Nullo F, Drosina M (2008) The role of phreatomagmatism in a Plio-Pleistocene high-density cinder cone field: Llancanelo Volcanic Field (Mendoza), Argentina. J Volcanol Geotherm Res 169(1–2):61–86

    Article  Google Scholar 

  • Rottas KM, Houghton BF (2012) Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O’ahu, Hawai’i. Bull Volcanol 74(7):1683–1697

    Article  Google Scholar 

  • Schmincke H-U, Fisher RV, Waters A (1973) Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20:553–574

    Article  Google Scholar 

  • Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong Tuff Ring, Cheju Island (Korea). Sedimentology 36(5):837–855

    Article  Google Scholar 

  • Stroncik NA, Schmincke HU (2002) Palagonite – a review. Int J Earth Sci 91(4):680–697

    Article  Google Scholar 

  • Tait MA, Cas RAF, Viramonte JG (2009) The origin of an unusual tuff ring of perlitic rhyolite pyroclasts: the last explosive phase of the Ramadas Volcanic Centre, Andean Puna, Salta, NW Argentina. J Volcanol Geotherm Res 183(1–2):1–16

    Article  Google Scholar 

  • Vazquez JA, Ort MH (2006) Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J Volcanol Geotherm Res 154(3–4):222–236

    Article  Google Scholar 

  • Vespermann D, Schmincke H-U (2000) Cinder cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic, San Diego, pp 683–694

    Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29

    Article  Google Scholar 

  • Williams DA, Fagents SA, Greeley R, McHone JF (2011) Field exercises in the Pinacate volcanic field, Mexico; an analog for planetary volcanism. Special Paper Geol Soc Am 483:449–464

    Article  Google Scholar 

  • Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413

    Article  Google Scholar 

  • Yingst RA, Schmidt ME, Lentz RCF (2009) Observations of a potential Mars analog at the microscale using rover-inspired methods: a 10-sol observation of Fort Rock tuff ring. J Geophys Res 114(E06004). doi:10.1029/2008JE003223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Brož .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Brož, P., Németh, K. (2015). Tuff Ring. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_403

Download citation

Publish with us

Policies and ethics