Skip to main content

Contributions of the Drosophila Model to Understanding Methylmercury Effects on Development

  • Chapter
  • First Online:
Methylmercury and Neurotoxicity

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 2))

  • 804 Accesses

Abstract

The use of Drosophila melanogaster (fruit flies) for examining the toxic effects of methylmercury (MeHg) effectively began in 1965 with Claes Ramel’s investigations of genetic effects of organic mercury compounds (Hereditas 57:445–447, 1967). Rationale for these early studies came not from the Minamata disaster but from environmental concerns for extensive use of mercury-based fungicides in farming and wood product industries. As understanding of mechanisms of mutagenesis was emerging at this time, Ramel’s studies focused on cytological data, namely, irregularities in meiotic chromosome disjunction, as an end point for MeHg exposures. Today, MeHg is known more for its potency in disrupting fetal neural development via mechanisms that prevail over nondisjunction or mutagenesis. Advancement of our knowledge of MeHg toxicity the past 45 years has, at the same time, seen an explosion in development and use of the Drosophila model. Drosophila is now a critical component of our modern arsenal of molecular genetic, whole organism, and systems biology approaches to biomedical research.

In this chapter, I survey the use of Drosophila in investigations of MeHg toxicity with a goal of (1) conveying an appreciation for past contributions with this model, (2) highlighting the informative outcomes of current applications, and (3) underscoring its promise for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell. 2003;5:441–50.

    Article  PubMed  CAS  Google Scholar 

  • Alattia JR, Kuraishi T, Dimitrov M, Chang I, Lemaitre B, Fraering PC. Mercury is a direct and potent {gamma}-secretase inhibitor affecting Notch processing and development in Drosophila. Faseb J. 2011;25(7):2287–95.

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Delidakis C, Fehon RG. The Notch locus and the cell biology of neuroblast segregation. Annu Rev Cell Biol. 1991;7:427–52.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M. Gene activity dependent on chromosome synapsis in the polytene chromosomes of Drosophila melanogaster. Nature. 1967a;214:1159–60.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. I. Autosomal puffing patterns in a laboratory stock of Drosophila melanogaster. Chromosoma. 1967b;21:398–428.

    Article  PubMed  CAS  Google Scholar 

  • Bland CE, Rand MR. Methylmercury induces activation of Notch signaling. Neurotoxicology. 2006;27:982–91.

    Article  PubMed  CAS  Google Scholar 

  • Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, Lemaitre B. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells. 2006;11:397–407.

    Article  PubMed  CAS  Google Scholar 

  • Carmona ER, Kossatz E, Creus A, Marcos R. Genotoxic evaluation of two mercury compounds in the Drosophila wing spot test. Chemosphere. 2008;70:1910–4.

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Lapham LW, Amin-Zaki L, Saleem T. Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J Neuropathol Exp Neurol. 1978;37:719–33.

    Article  PubMed  CAS  Google Scholar 

  • Crespo-Lopez ME, Macedo GL, Pereira SI, Arrifano GP, Picanco-Diniz DL, do Nascimento JL, Herculano AM. Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacol Res. 2009;60:212–20.

    Article  PubMed  CAS  Google Scholar 

  • Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, Batterham P, Feyereisen R, Wilson TG, ffrench-Constant RH. A single p450 allele associated with insecticide resistance in Drosophila. Science. 2002;297:2253–6.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly P. Progress and challenges in genome-wide association studies in humans. Nature. 2008;456:728–31.

    Article  PubMed  CAS  Google Scholar 

  • Ekengren S, Hultmark D. A family of Turandot-related genes in the humoral stress response of Drosophila. Biochem Biophys Res Commun. 2001;284:998–1003.

    Article  PubMed  CAS  Google Scholar 

  • Fok TF, Lam HS, Ng PC, Yip AS, Sin NC, Chan IH, Gu GJ, So HK, Wong EM, Lam CW. Fetal methylmercury exposure as measured by cord blood mercury concentrations in a mother-infant cohort in Hong Kong. Environ Int. 2007;33:84–92.

    Article  PubMed  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003;194:237–55.

    Article  PubMed  CAS  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nat Rev Neurosci. 2006;7:93–102.

    Article  PubMed  CAS  Google Scholar 

  • Mackay TF. The genetic architecture of quantitative traits. Annu Rev Genet. 2001;35:303–39.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson J, Ramel C. Genetic variation in the susceptibility to mercury and other metal compounds in Drosophila melanogaster. Teratog Carcinog Mutagen. 1986;6:289–305.

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra CT, Bond J, Rand DM, Rand MD. Identification of methylmercury tolerance gene candidates in Drosophila. Toxicol Sci. 2010;116:225–38.

    Article  PubMed  CAS  Google Scholar 

  • Osgood C, Zimmering S, Mason JM. Aneuploidy in Drosophila, II. Further validation of the FIX and ZESTE genetic test systems employing female Drosophila melanogaster. Mutat Res. 1991;259:147–63.

    Article  PubMed  CAS  Google Scholar 

  • Ramel C. Genetic effects of organic mercury compounds. Hereditas. 1967;57:445–7.

    Article  PubMed  CAS  Google Scholar 

  • Ramel C. Genetic effects of organic mercury compounds. I. Cytological investigations on Allium roots. Hereditas. 1969;61:208–30.

    Article  PubMed  CAS  Google Scholar 

  • Ramel C, Magnusson J. Genetic effects of organic mercury compounds. II. Chromosome segregation in Drosophila melanogaster. Hereditas. 1969;61:231–54.

    Article  PubMed  CAS  Google Scholar 

  • Rand MD, Bland CE, Bond J. Methylmercury activates enhancer-of-split and bearded complex genes independent of the Notch receptor. Toxicol Sci. 2008;104:163–76.

    Article  PubMed  CAS  Google Scholar 

  • Rand MD, Dao JC, Clason TA. Methylmercury disruption of embryonic neural development in Drosophila. Neurotoxicology. 2009;30:794–802.

    Article  PubMed  CAS  Google Scholar 

  • Rasmuson A. Mutagenic effects of some water-soluble metal compounds in a somatic eye-color test system in Drosophila melanogaster. Mutat Res. 1985;157:157–62.

    Article  PubMed  CAS  Google Scholar 

  • Robertson A. The nature of quantitative genetic variation. In: Brink A, editor. Heritage from Mendel. Madison: University of Wisconsin; 1967. pp. 265–80.

    Google Scholar 

  • Rodrigues JL, Serpeloni JM, Batista BL, Souza SS, Barbosa Jr F. Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury. Arch Toxicol. 2010;84:891–6.

    Article  PubMed  CAS  Google Scholar 

  • Sass JB, Haselow DT, Silbergeld EK. Methylmercury-induced decrement in neuronal migration may involve cytokine-dependent mechanisms: a novel method to assess neuronal movement in vitro. Toxicol Sci. 2001;63:74–81.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26:565–97.

    Article  PubMed  CAS  Google Scholar 

  • Sorsa M, Pfeifer S. Response of puffing pattern to in vivo treatments with organomercurials in Drosophila melanogaster. Hereditas. 1973;74:89–102.

    Article  PubMed  CAS  Google Scholar 

  • Stern AH, Smith AE. An assessment of the cord blood: maternal blood methylmercury ratio: implications for risk assessment. Environ Health Perspect. 2003;111:1465–70.

    Article  PubMed  CAS  Google Scholar 

  • Vogel DG, Margolis RL, Mottet NK. The effects of methyl mercury binding to microtubules. Toxicol Appl Pharmacol. 1985;80:473–86.

    Article  PubMed  CAS  Google Scholar 

  • Wurmbach E, Wech I, Preiss A. The enhancer of split complex of Drosophila melanogaster harbors three classes of notch responsive genes. Mech Dev. 1999;80:171–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Mandy Burton assistance in editing the manuscript. This work was supported by NIEHS R01-ES015550 awarded to M.D.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Rand PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rand, M.D. (2012). Contributions of the Drosophila Model to Understanding Methylmercury Effects on Development. In: Ceccatelli, S., Aschner, M. (eds) Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2383-6_17

Download citation

Publish with us

Policies and ethics