Skip to main content

Directed Evolution of a Fungal Xylanase for Improvement of Thermal and Alkaline Stability

  • Chapter
  • First Online:
Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 6444 Accesses

Abstract

Pre-treatment of paper pulps with xylanases has been shown to decrease the amounts of toxic chlorine dioxide used to bleach pulp. Natural xylanases are unable to tolerate the extremes of pH and temperature during the paper bleaching process and have to be genetically modified to be made more suitable for such industrial conditions. Such modification can be achieved using site-directed or random mutagenesis methods. Random mutagenesis methods are more attractive because detailed information regarding sequence or structure of the enzyme is not required. This chapter outlines how the thermal stability and alkaline stability of a glycosyl hydrolase family 11 cellulase-free xylanase from the fungus Thermomyces lanuginosus were improved using two random mutagenesis methods, error-prone PCR and a DNA shuffling method called the staggered extension process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor SV, Kast P, Hilvert D (2001) Investigating and engineering enzymes by genetic selection. Angew Chem Int Ed 40:3310–3335

    Article  Google Scholar 

  2. Tobin MB, Gustafsson C, Huisman GW (2000) Directed evolution, the “rational” basis for “irrational” design. Curr Opin Struct Biol 10:421–427

    Article  PubMed  CAS  Google Scholar 

  3. Dalby PA (2003) Optimizing enzyme function by directed evolution. Curr Opin Struct Biol 13:500–505

    Article  PubMed  CAS  Google Scholar 

  4. Cedrone F, Ménez A, Quéméneur E (2000) Tailoring new enzyme functions by rational redesign. Curr Opin Struct Biol 10:405–410

    Article  PubMed  CAS  Google Scholar 

  5. Bacher JM, Reiss BR, Ellington AD (2002) Anticipatory evolution and DNA shuffling. Genome Biol 3:1021.1–1021.4

    Article  Google Scholar 

  6. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes, a review. Biores Technol 89:17–34

    Article  CAS  Google Scholar 

  7. Tracewell CA, Arnold FH (2009) Directed enzyme evolution, climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 13:3–9

    Article  PubMed  CAS  Google Scholar 

  8. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  9. Matsumura S, Sakiyama K, Toshima K (1999) Preparation of octyl-β-D-xylobioside and xyloside by xylanase-catalyzed direct transglycosylation reaction of xylan and octanol. Biotechnol Lett 21:17–22

    Article  CAS  Google Scholar 

  10. Strauss MLA, Jolly NP, Lambrechts MG, van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol 91:182–190

    Article  PubMed  CAS  Google Scholar 

  11. Kimura T, Suzuki H, Furuhashi H, Aburatani T, Morimoto K, Sakka K et al (2002) Molecular cloning, characterization and expression analysis of the xynF3 gene from Aspergillus oryzae. Biosci Biotechnol Biochem 66:285–292

    Article  PubMed  CAS  Google Scholar 

  12. Colombatto D, Morgavi DP, Furtado AF, Beauchemin KA (2003) Screening of exogenous enzymes for ruminant diets, relationship between biochemical characteristics and in vitro ruminal degradation. J Anim Sci 81:2628–2638

    PubMed  CAS  Google Scholar 

  13. Viikari L, Kantelinen A, Sunquist J, Linko M (1994) Xylanases in bleaching, from an idea to the industry. FEMS Microbiol Rev 13:335–350

    Article  CAS  Google Scholar 

  14. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications, a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  15. Salles BC, Medeiros RG, Bao SN, Silva FG, Filho EXF (2005) Effect of cellulase-free xylanases from Acrophialophora nainiana and Humicola grisea var. thermoidea on eucalyptus kraft pulp. Process Biochem 40:343–349

    Article  CAS  Google Scholar 

  16. Valls C, Vidal T, Roncero MB (2010) The role of xylanases and laccases on hexenuronic acid and lignin removal. Process Biochem 45:425–430

    Article  CAS  Google Scholar 

  17. Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Thermostable and alkaline-tolerant cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching processes, a review. Process Biochem 38:1327–1340

    Article  CAS  Google Scholar 

  18. Schlacher A, Holzmann K, Hayn M, Steiner W, Schwab H (1996) Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J Biotechnol 49:211–218

    Article  PubMed  CAS  Google Scholar 

  19. Gruber K, Klintschar G, Hayn M, Schlacher A, Steiner W, Kratky C (1998) Thermophilic xylanase from Thermomyces lanuginosus, high resolution x-ray structure and modelling studies. Biochemistry 37:13475–13485

    Article  PubMed  CAS  Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory, New York, NY

    Google Scholar 

  21. Stephens DE, Singh S, Permaul K (2009) Error-prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability. FEMS Microbiol Lett 293:42–47

    Article  PubMed  CAS  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  23. Ausubel FM, Brent R, Kingston RE, Moore DD, Siedman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology, vol 2. Greene, New York, NY

    Google Scholar 

  24. Drummond DA, Iverson BL, Georgiou G, Arnold FH (2005) Why high error-rate random mutagenesis libraries are enriched in functional and improved proteins. J Mol Biol 350:806–816

    Article  PubMed  CAS  Google Scholar 

  25. Vanhercke T, Ampe C, Tirry L, Denolf P (2005) Reducing mutational bias in random protein libraries. Anal Biochem 339:9–14

    Article  PubMed  CAS  Google Scholar 

  26. Biely P, Mislovicova D, Toman R (1985) Soluble chromogenic substrates for the assay of endo-β-1,4-xylanases and endo-β-1,4-glucanases. Anal Biochem 144:142–146

    Article  PubMed  CAS  Google Scholar 

  27. Biely P, Mislovicova D, Toman R (1988) Remazol brilliant blue xylan, a soluble chromogenic substrate for xylanases. Methods Enzymol 160:536–541

    Article  CAS  Google Scholar 

  28. Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95:12809–12813

    Article  PubMed  CAS  Google Scholar 

  29. Matsuura T, Miyai K, Trakulnaleamsai S, Yomo T, Shima Y, Miki S et al (1999) Evolutionary molecular engineering by random elongation mutagenesis. Nat Biotechnol 17:58–61

    Article  PubMed  CAS  Google Scholar 

  30. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotech 23:257–270

    Article  CAS  Google Scholar 

  31. Teather RM, Wood PJ (1982) Use of Congo Red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    PubMed  CAS  Google Scholar 

  32. Béguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44:219–248

    Article  PubMed  Google Scholar 

  33. Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261

    Article  PubMed  CAS  Google Scholar 

  34. Gong J, Zheng H, Wu Z, Chen T, Zhao X (2009) Genome shuffling: progress and applications for phenotype improvement. Biotech Adv 27:996–1005

    Article  Google Scholar 

  35. Stephens, D.E. (2007). Protein engineering of a fungal xylanase. Doctoral Thesis. Durban University of Technology, South Africa.

    Google Scholar 

  36. Hakulinen N, Turunen O, Jänis J, Leisola M, Rouvinen J (2003) Three-dimensional structures of thermophilic β-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa, comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem 270:1399–1412

    Article  PubMed  CAS  Google Scholar 

  37. Matsumura I, Ellington AD (2001) Mutagenic PCR of protein-coding genes for in vitro evolution. In: Braman J (ed) In vitro mutagenesis. Humana, NJ, pp 261–269

    Google Scholar 

  38. Chen YL, Tang TY, Cheng KJ (2001) Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can J Microbiol 47:1088–1094

    PubMed  CAS  Google Scholar 

  39. Xu H, Petersen EI, Petersen SB, El-Gewely MR (1999) Random mutagenesis libraries: optimization and simplification by PCR. Biotechniques 27:1102–1108

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Ms. Siphi Dlungwane is duly acknowledged for providing technical assistance. The National Research Foundation of South Africa funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn Elizabeth Stephens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stephens, D.E., Singh, S., Permaul, K. (2013). Directed Evolution of a Fungal Xylanase for Improvement of Thermal and Alkaline Stability. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_40

Download citation

Publish with us

Policies and ethics