Skip to main content

The Genomics of Cholera

  • Chapter
  • First Online:
Genomics Applications for the Developing World

Part of the book series: Advances in Microbial Ecology ((AMIE))

  • 1066 Accesses

Abstract

Vibrio cholerae, a bacterium autochthonous to the aquatic environment and introduced into the human intestine through contaminated water or food, is the etiological agent of the acute secretory diarrheal disease described as cholera. The pathogen has a free-living planktonic existence in aquatic bodies and has the ability to transmit into humans and cause disease. The process of completing an annual cycle in the environment and the transmission from contaminated water or food to humans is described as the ecology and epidemiology of the pathogen. This species contains a wide variety of both pathogenic and nonpathogenic strains. At the subspecies level, the organism is classified into more than 200 serogroups (Li et al. 2002). The differentiation of V. cholerae into serogroups is based on the differences in the sugar composition and therefore antigenicity of the heat-stable surface somatic “O” antigen. Only strains of serogroups O1 and O139 that produce cholera toxin defined as toxigenic strains have been recognized as agents of sporadic, endemic, epidemic, and pandemic cholera (Fig. 3.1) (Kaper et al. 1995; Sack et al. 2004). Most other serogroups of V. cholerae are not pathogenic or rarely cause local outbreaks, or mild gastroenteritis. V. cholerae strains belonging to serogroup O1 are further differentiated into two biotypes, classical and El Tor. The differentiation into biotypes is based on a combination of phenotypic, biochemical, and genetic traits, that include susceptibility to polymixin B, hemagglutination of chicken erythrocytes, hemolysis of sheep erythrocytes, the Voges–Proskauer test, susceptibility to phages, and nucleotide sequences of specific genes (Kaper et al. 1995). The other serogroups of V. cholerae, collectively called non-O1, non-O139, are not associated with epidemics and are ubiquitously distributed in the aquatic environment (Faruque et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker A, Manning PA (1997) VlpA of Vibrio cholerae O1: the first bacterial member of the alpha 2-microglobulin lipocalin superfamily. Microbiology 143(Pt 6):1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Burrus V, Marrero J, Waldor MK (2006a) The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid 55(3):173–183

    Article  PubMed  CAS  Google Scholar 

  • Burrus V, Pavlovic G, Decaris B, Guedon G (2002) Conjugative transposons: the tip of the iceberg. Mol Microbiol 46(3):601–610

    Article  PubMed  CAS  Google Scholar 

  • Burrus V, Quezada-Calvillo R, Marrero J, Waldor MK (2006b) SXT-related integrating conjugative element in New World Vibrio cholerae. Appl Environ Microbiol 72(4):3054–3057

    Article  PubMed  CAS  Google Scholar 

  • Cambray G, Guerout AM, Mazel D (2010) Integrons. Annu Rev Genet 44:141–166

    Article  PubMed  CAS  Google Scholar 

  • Casjens S (1998) The diverse and dynamic structure of bacterial genomes. Annu Rev Genet 32:339–377

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli D, Salvia AM, Sami J, Cappuccinelli P, Colombo MM (2006) New cluster of plasmid-located class 1 integrons in Vibrio cholerae O1 and a dfrA15 cassette-containing integron in Vibrio parahaemolyticus isolated in Angola. Antimicrob Agents Chemother 50(7):2493–2499

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Johnson JA, Pusch GD, Morris JG Jr, Stine OC (2007) The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun 75(5):2645–2647

    Article  PubMed  CAS  Google Scholar 

  • Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR et al (2011) The origin of the Haitian cholera outbreak strain. N Engl J Med 364(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ et al (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 106(36):15442–15447

    Article  PubMed  CAS  Google Scholar 

  • Coetzee JN, Datta N, Hedges RW (1972) R factors from Proteus rettgeri. J Gen Microbiol 72(3):543–552

    Article  PubMed  CAS  Google Scholar 

  • Das B, Bischerour J, Barre FX (2011) VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA 108(6):2516–2521

    Article  PubMed  CAS  Google Scholar 

  • Das B, Bischerour J, Val ME, Barre FX (2010) Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA 107(9):4377–4382

    Article  PubMed  CAS  Google Scholar 

  • Das B, Halder K, Pal P, Bhadra RK (2007) Small chromosomal integration site of classical CTX prophage in Mozambique Vibrio cholerae O1 biotype El Tor strain. Arch Microbiol 188(6):677–683

    Article  PubMed  CAS  Google Scholar 

  • Davis BM, Kimsey HH, Chang W, Waldor MK (1999) The Vibrio cholerae O139 Calcutta bacteriophage CTXphi is infectious and encodes a novel repressor. J Bacteriol 181(21):6779–6787

    PubMed  CAS  Google Scholar 

  • Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 99(3):1556–1561

    Article  PubMed  CAS  Google Scholar 

  • Falero A, Caballero A, Ferran B, Izquierdo Y, Fando R, Campos J (2009) DNA binding proteins of the filamentous phages CTXphi and VGJphi of Vibrio cholerae. J Bacteriol 191(18):5873–5876

    Article  PubMed  CAS  Google Scholar 

  • Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62(4):1301–1314

    PubMed  CAS  Google Scholar 

  • Faruque SM, Tam VC, Chowdhury N, Diraphat P, Dziejman M, Heidelberg JF et al (2007) Genomic analysis of the Mozambique strain of Vibrio cholerae O1 reveals the origin of El Tor strains carrying classical CTX prophage. Proc Natl Acad Sci USA 104(12):5151–5156

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Reeves PR, Lan R, Ren Y, Gao C, Zhou Z et al (2008) A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS One 3(12):e4053

    Article  PubMed  Google Scholar 

  • Fluit AC, Schmitz FJ (2004) Resistance integrons and super-integrons. Clin Microbiol Infect 10(4):272–288

    Article  PubMed  CAS  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Ramamurthy T (2011) Antimicrobials & cholera: are we stranded? Indian J Med Res 133(2):225–231

    PubMed  CAS  Google Scholar 

  • Ghosh-Banerjee J, Senoh M, Takahashi T, Hamabata T, Barman S, Koley H et al (2010) Cholera toxin production by the El Tor variant of Vibrio cholerae O1 compared to prototype El Tor and classical biotypes. J Clin Microbiol 48(11):4283–4286

    Article  PubMed  CAS  Google Scholar 

  • Goel AK, Jain M, Kumar P, Bhadauria S, Kmboj DV, Singh L (2008) A new variant of Vibrio cholerae O1 El Tor causing cholera in India. J Infect 57(3):280–281

    Article  PubMed  Google Scholar 

  • Goldstein F, Gerbaud G, Courvalin P (1986) Transposable resistance to trimethoprim and 0/129 in Vibrio cholerae. J Antimicrob Chemother 17(5):559–569

    Article  PubMed  CAS  Google Scholar 

  • Grim CJ, Choi J, Chun J, Jeon YS, Taviani E, Hasan NA et al (2010) Occurrence of the Vibrio cholerae seventh pandemic VSP-I island and a new variant. OMICS 14(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • group Cw (1993) Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Cholera Working Group, International Centre for Diarrhoeal Diseases Research, Bangladesh. Lancet 342(8868):387–390

    Article  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  PubMed  CAS  Google Scholar 

  • Halder K, Das B, Nair GB, Bhadra RK (2010) Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology 156(Pt 1):99–107

    Article  PubMed  CAS  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ et al (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406(6795):477–483

    Article  PubMed  CAS  Google Scholar 

  • Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R, Waldor MK (2001) Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 45(11):2991–3000

    Article  PubMed  CAS  Google Scholar 

  • Hochhut B, Waldor MK (1999) Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 32(1):99–110

    Article  PubMed  CAS  Google Scholar 

  • Jermyn WS, Boyd EF (2002) Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 148(Pt 11):3681–3693

    PubMed  CAS  Google Scholar 

  • Kaper JB, Morris JG Jr, Levine MM (1995) Cholera. Clin Microbiol Rev 8(1):48–86

    PubMed  CAS  Google Scholar 

  • Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR (1998) A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA 95(6):3134–3139

    Article  PubMed  CAS  Google Scholar 

  • Kimsey HH, Waldor MK (2004) The CTXphi repressor RstR binds DNA cooperatively to form tetrameric repressor-operator complexes. J Biol Chem 279(4):2640–2647

    Article  PubMed  CAS  Google Scholar 

  • Li M, Shimada T, Morris JG Jr, Sulakvelidze A, Sozhamannan S (2002) Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect Immun 70(5):2441–2453

    Article  PubMed  CAS  Google Scholar 

  • Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4(8):608–620

    Article  PubMed  CAS  Google Scholar 

  • Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280(5363):605–608

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhashi S, Harada K, Hashimoto H, Egawa R (1961) On the drug-resistance of enteric bacteria 4 Drug-resistance of Shigella prevalent in Japan. Jpn J Exp Med 31:47–52

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay AK, Basu I, Bhattacharya SK, Bhattacharya MK, Nair GB (1998) Emergence of fluoroquinolone resistance in strains of Vibrio cholerae isolated from hospitalized patients with acute diarrhea in Calcutta, India. Antimicrob Agents Chemother 42(1):206–207

    PubMed  CAS  Google Scholar 

  • Murphy RA, Boyd EF (2008) Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol 190(2):636–647

    Article  PubMed  CAS  Google Scholar 

  • Nair GB, Faruque SM, Bhuiyan NA, Kamruzzaman M, Siddique AK, Sack DA (2002) New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 40(9):3296–3299

    Article  PubMed  Google Scholar 

  • Nair GB, Ramamurthy T, Bhattacharya SK, Mukhopadhyay AK, Garg S, Bhattacharya MK et al (1994) Spread of Vibrio cholerae O139 Bengal in India. J Infect Dis 169(5):1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Nusrin S, Gil AI, Bhuiyan NA, Safa A, Asakura M, Lanata CF et al (2009) Peruvian Vibrio cholerae O1 El Tor strains possess a distinct region in the Vibrio seventh pandemic island-II that differentiates them from the prototype seventh pandemic El Tor strains. J Med Microbiol 58(Pt 3):342–354

    Article  PubMed  CAS  Google Scholar 

  • Ogawa A, Takeda T (1993) The gene encoding the heat-stable enterotoxin of Vibrio cholerae is flanked by 123-base pair direct repeats. Microbiol Immunol 37(8):607–616

    PubMed  CAS  Google Scholar 

  • O’Shea YA, Finnan S, Reen FJ, Morrissey JP, O’Gara F, Boyd EF (2004) The Vibrio seventh pandemic island-II is a 26.9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43.4 kb genomic island in V. vulnificus. Microbiology 150(Pt 12):4053–4063

    Article  PubMed  Google Scholar 

  • Quilici ML, Massenet D, Gake B, Bwalki B, Olson DM (2010) Vibrio cholerae O1 variant with reduced susceptibility to ciprofloxacin, Western Africa. Emerg Infect Dis 16(11):1804–1805

    Article  PubMed  Google Scholar 

  • Ramamurthy T, Garg S, Sharma R, Bhattacharya SK, Nair GB, Shimada T et al (1993) Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 341(8846):703–704

    Article  PubMed  CAS  Google Scholar 

  • Safa A, Nair GB, Kong RY (2010) Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 18(1):46–54

    Article  PubMed  CAS  Google Scholar 

  • Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363(9404):223–233

    Article  PubMed  CAS  Google Scholar 

  • Siddique AK, Nair GB, Alam M, Sack DA, Huq A, Nizam A et al (2010) El Tor cholera with severe disease: a new threat to Asia and beyond. Epidemiol Infect 138(3):347–352

    Article  PubMed  CAS  Google Scholar 

  • Stewart-Tull DE, Ollar RA, Scobie TS (1986) Studies on the Vibrio cholerae mucinase complex. I. Enzymic activities associated with the complex. J Med Microbiol 22(4):325–333

    Article  PubMed  CAS  Google Scholar 

  • Threlfall EJ, Rowe B, Huq I (1980) Plasmid-encoded multiple antibiotic resistance in Vibrio cholerae El Tor from Bangladesh. Lancet 1(8180):1247–1248

    Article  PubMed  CAS  Google Scholar 

  • Thungapathra M, Amita SKK, Chaudhuri SR, Garg P, Ramamurthy T et al (2002) Occurrence of antibiotic resistance gene cassettes aac(6’)-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob Agents Chemother 46(9):2948–2955

    Article  PubMed  CAS  Google Scholar 

  • Trucksis M, Michalski J, Deng YK, Kaper JB (1998) The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci USA 95(24):14464–14469

    Article  PubMed  CAS  Google Scholar 

  • Val ME, Kennedy SP, El Karoui M, Bonne L, Chevalier F, Barre FX (2008) FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae. PLoS Genet 4(9):e1000201

    Article  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272(5270):1910–1914

    Article  PubMed  CAS  Google Scholar 

  • Waldor MK, Rubin EJ, Pearson GD, Kimsey H, Mekalanos JJ (1997) Regulation, replication, and integration functions of the Vibrio cholerae CTXphi are encoded by region RS2. Mol Microbiol 24(5):917–926

    Article  PubMed  CAS  Google Scholar 

  • Waldor MK, Tschape H, Mekalanos JJ (1996) A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178(14):4157–4165

    PubMed  CAS  Google Scholar 

  • Wozniak RA, Fouts DE, Spagnoletti M, Colombo MM, Ceccarelli D, Garriss G et al (2009) Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet 5(12):e1000786

    Article  PubMed  Google Scholar 

  • Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci USA 100(3):1286–1291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all members of the F.X. Barre lab for helpful suggestions during the preparation of this chapter. BD is supported by the CNRS postdoctoral research fellowship, Government of France. GBN acknowledges the support of the Indian Council of Medical Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Balakrish Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Das, B., Nair, G.B. (2012). The Genomics of Cholera. In: Nelson, K., Jones-Nelson, B. (eds) Genomics Applications for the Developing World. Advances in Microbial Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2182-5_3

Download citation

Publish with us

Policies and ethics