Skip to main content

Nanomaterial Design and Computational Modeling

  • Chapter
  • First Online:
Nanomedicine

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1709 Accesses

Abstract

Computational modeling has much to offer in the booming nanomaterials design and nanomedicine, in that it supplies “virtue experimental methods” to investigate mechanisms of phenomena and even to design artificial structures in order to get desirable properties. This chapter presents theoretical frameworks of three most widely-used atomistic simulation methods: first-principles, tight binding and molecular dynamics, as well as some detailed demonstrations on their applications in nanomaterials modeling. In the discussion of first-principles method, the density functional theory with necessary mathematical treatments is highlighted. In the tight binding section, a detailed derivation of secular equation of tight binding method is presented and Slater-Koster two-center approximation is discussed. For molecular dynamics, the empirical potentials and integrators of motion equations of atoms are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heath J, Keukes P, Snider G et al (1998) A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280:1716–1721

    Article  CAS  Google Scholar 

  2. Hu L, Choi J, Yang Y et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106:21490–21494

    Article  CAS  Google Scholar 

  3. Jeon I, Choi HJ, Choi M et al (2013) Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep 3:1810

    Google Scholar 

  4. Derfus A, Chan W, Bhatia S (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  5. Wang W, McCool G, Kapur N et al (2012) Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in Diesel exhaust. Science 337:832

    Article  CAS  Google Scholar 

  6. Yang W, Thordarson P, Gooding J et al (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001

    Article  Google Scholar 

  7. Bhattacharya P, Du D, Lin Y (2014) Bioinspired nanoscale materials for biomedical and energy applications. J R Soc Interface 11(95):20131067

    Article  Google Scholar 

  8. Decuzzi P, Schrefler B, Liu WK (2014) Nanomedicine. Comput Mechan 53(3):401–402

    Article  Google Scholar 

  9. Dell’Orco D, Lundqvist M, Linse S et al (2014) Mathematical modeling of the protein corona: implications for nanoparticulate delivery systems. Nanomedicine 9(6):851–858

    Article  Google Scholar 

  10. Redler RL, Shirvanyants D, Dagliyan O et al (2014) Computational approaches to understanding protein aggregation in neurodegeneration. J Mol Cell Biol 6(2):104–115

    Article  CAS  Google Scholar 

  11. Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano Lett 3:513–517

    Article  CAS  Google Scholar 

  12. Villalpando-Paez F, Romero A, Munoz-Sandoval E et al (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 386:137–143

    Article  CAS  Google Scholar 

  13. Schiøtz J, Di Tolla F, Jacobsen F (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563

    Article  Google Scholar 

  14. Chen Z, Kioussis N, Tu KN et al (2010) Inhibiting adatom diffusion through surface alloying. Phys Rev Lett 105:015703

    Article  Google Scholar 

  15. Grosso G, Parravicini G (2000) Solid state physics. Academic, San Diego

    Google Scholar 

  16. Hohenber P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  17. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  18. Ceperley D, Alder B (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  19. Perdew J, Zunger A (1981) Self-interaction correlation to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  20. Perdew J, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  21. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr R (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Martin R (2004) Electronic structure basic theory and practical methods. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  24. Kohanoff J (2006) Electronic structure calculations for solids and molecules. Cambridge University Press, New York

    Book  Google Scholar 

  25. Bevan K, Zhu W, Stocks G et al (2012) Local fields in conductor surface electromigration: a first-principles study in the low-bias ballistic limit. Phys Rev B 85:235421

    Article  Google Scholar 

  26. Winterfeld L, Agapito L, Li J et al (2013) Strain-induced topological insulator phase transition in HgSe. Phys Rev B 87:075143

    Article  Google Scholar 

  27. Yan M, Suh J, Ren F et al (2005) Effect of Cu3Sn coatings a electromigration lifetime improvement of Cu dual-damascene interconnects. Appl Phys Lett 87:211103

    Article  Google Scholar 

  28. Harrison W (1999) Elemental electronic structure. World Publishing, Singapore

    Book  Google Scholar 

  29. Slater J, Koster G (1954) Simplified LCAO method for the periodic potential problem. Phys Rev 94:1498–1524

    Article  CAS  Google Scholar 

  30. Sharma R (1979) General expressions for reducing the Slater-Koster linear combination of atomic orbitals integrals to the two-center approximation. Phys Rev B 19:2813–2823

    Article  CAS  Google Scholar 

  31. Podolskiy A, Vogl P (2004) Compact expressions for the angular dependence of tight-binding Hamiltonian matrix elements. Phys Rev B 69:233101

    Article  Google Scholar 

  32. Shan B, Lakatos G, Peng S et al (2005) First-principles study of band-gap change in deformed nanotubes. Appl Phys Lett 87:173109

    Article  Google Scholar 

  33. Brown J, Ghoniem N (2010) Reversible-irreversible plasticity transition in twinned copper nanopillars. Acta Mater 58:886–894

    Article  CAS  Google Scholar 

  34. Starikov S, Insepov Z, Rest J et al (2011) Radiation-induced damage and evolution of defects in Mo. Phys Rev B 84:104109

    Article  Google Scholar 

  35. Trautt Z, Adland A, Karma A et al (2012) Coupled motion of asymmetrical tilt grain boundaries: molecular dynamics and phase field crystal simulations. Acta Mater 60:6528–6546

    Article  CAS  Google Scholar 

  36. Daw M, Baskes M (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453

    Article  CAS  Google Scholar 

  37. Ercolessi F, Adams J (1994) Interatomic potentials from first-principles calculations: the force-matching method. Europhys Lett 26:583–588

    Article  CAS  Google Scholar 

  38. Chen Z, Kioussis N, Ghoniem N (2009) Influence of nanoscale Cu precipitates in α-Fe on dislocation core structure and strengthening. Phys Rev B 80:184104

    Article  Google Scholar 

  39. Brommer P, Gähler F (2007) Potfit: effective potentials from ab initio data. Modell Simul Mater Sci Eng 15:295–304

    Article  CAS  Google Scholar 

  40. Mendelev M, Han S, Srolovitz D et al (2003) Development of new interatomic potentials appropriate for crystalline and liquid iron. Phil Mag 83:3977–3994

    Article  CAS  Google Scholar 

  41. Frenkel D, Smit B (2002) Understanding molecular simulation from algorithms to applications. Academic, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Shan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, Z., Chen, R., Shan, B. (2014). Nanomaterial Design and Computational Modeling. In: Ge, Y., Li, S., Wang, S., Moore, R. (eds) Nanomedicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2140-5_4

Download citation

Publish with us

Policies and ethics