Skip to main content

On the Complexity of Nonlinear Mixed-Integer Optimization

  • Conference paper
  • First Online:
Mixed Integer Nonlinear Programming

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 154))

Abstract

This is a survey on the computational complexity of nonlinear mixedinteger optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomialtime algorithms for special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman and K. Manders, Reducibility, randomness and intractability, in Proc. 9th Annual ACM Symposium on Theory of Computing, 1977, pp. 151–163.

    Google Scholar 

  2. M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Annals of Math., 160 (2004), pp. 781–793.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Baldoni, N. Berline, J.A. De Loera, M. K¨oppe, and M. Vergne, How to integrate a polynomial over a simplex. To appear in Mathematics of Computation. eprint arXiv:0809.2083 [math.MG], 2008.

    Google Scholar 

  4. B. Bank, J. Heintz, T. Krick, R. Mandel, and P. Solern´o, Une borne optimale pour la programmation enti´ere quasi-convexe, Bull. Soc. math. France, 121 (1993), pp. 299–314.

    Google Scholar 

  5. B. Bank, T. Krick, R. Mandel, and P. Solern´o, A geometrical bound for integer programming with polynomial constraints, in Fundamentals of Computation Theory, Vol. 529 of Lecture Notes In Computer Science, Springer-Verlag, 1991, pp. 121–125.

    Google Scholar 

  6. A.I. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Mathematics of Operations Research, 19 (1994), pp. 769–779.

    Article  MATH  MathSciNet  Google Scholar 

  7. A.I. Barvinok and J.E. Pommersheim, An algorithmic theory of lattice points in polyhedra, in New Perspectives in Algebraic Combinatorics, L.J. Billera, A. Bj¨orner, C. Greene, R.E. Simion, and R.P. Stanley, eds., Vol. 38 of Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 1999, pp. 91–147.

    Google Scholar 

  8. S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer-Verlag, second ed., 2006.

    Google Scholar 

  9. M. Bellare and P. Rogaway, The complexity of aproximating a nonlinear program, in Pardalos [55].

    Google Scholar 

  10. M. Bellare and P. Rogaway, The complexity of approximating a nonlinear program, Mathematical Programming, 69 (1995), pp. 429–441.

    MATH  MathSciNet  Google Scholar 

  11. Y. Berstein, J. Lee, H. Maruri-Aguilar, S. Onn, E. Riccomagno, R. Weismantel, and H. Wynn, Nonlinear matroid optimization and experimental design, SIAM Journal on Discrete Mathematics, 22 (2008), pp. 901–919.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Berstein, J. Lee, S. Onn, and R. Weismantel, Nonlinear optimization for matroid intersection and extensions, IBM Research Report RC24610 (2008).

    Google Scholar 

  13. Y. Berstein and S. Onn, Nonlinear bipartite matching, Discrete Optimization, 5 (2008), pp. 53–65.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Am. Math. Soc., 21 (1989), pp. 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  15. W.J. Cook, M.E. Hartmann, R. Kannan, and C. McDiarmid, On integer points in polyhedra, Combinatorica, 12 (1992), pp. 27–37.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. de Klerk, The complexity of optimizing over a simplex, hypercube or sphere: a short survey, Central European Journal of Operations Research, 16 (2008), pp. 111–125.

    Article  MATH  Google Scholar 

  17. E. de Klerk, M. Laurent, and P.A. Parrilo, A PTAS for the minimization of polynomials of fixed degree over the simplex, Theoretical Computer Science, 361 (2006), pp. 210–225.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.A. De Loera, R. Hemmecke, M. K¨oppe, and R. Weismantel, FPTAS for mixed-integer polynomial optimization with a fixed number of variables, in 17th ACM-SIAM Symposium on Discrete Algorithms, 2006, pp. 743–748.

    Google Scholar 

  19. Integer polynomial optimization in fixed dimension, Mathematics of Operations Research, 31 (2006), pp. 147–153.

    Google Scholar 

  20. FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension, Mathematical Programming, Series A, 118 (2008), pp. 273–290.

    Google Scholar 

  21. J.A. De Loera, R. Hemmecke, S. Onn, and R. Weismantel, N-fold integer programming, Disc. Optim., to appear (2008).

    Google Scholar 

  22. J.A. De Loera and S. Onn, All linear and integer programs are slim 3-way transportation programs, SIAM Journal of Optimization, 17 (2006), pp. 806–821.

    Article  MATH  Google Scholar 

  23. Markov bases of three-way tables are arbitrarily complicated, Journal of Symbolic Computation, 41 (2006), pp. 173–181.

    Google Scholar 

  24. F. Eisenbrand, Integer programming and algorithmic geometry of numbers, in 50 Years of Integer Programming 1958–2008, M. J¨unger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey, eds., Springer-Verlag, 2010.

    Google Scholar 

  25. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, W.H. Freeman and Company, New York, NY, 1979.

    Google Scholar 

  26. M. Gr¨otschel, L. Lov´asz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, Germany, 1988.

    Google Scholar 

  27. M.E. Hartmann, Cutting Planes and the Complexity of the Integer Hull, phd thesis, Cornell University, Department of Operations Research and Industrial Engineering, Ithaca, NY, 1989.

    Google Scholar 

  28. J.H˚astad, Some optimal inapproximability results, in Proceedings of the 29th Symposium on the Theory of Computing (STOC), ACM, 1997, pp. 1–10.

    Google Scholar 

  29. J. Heintz, M. Roy, and P. Solern´o, Sur la complexit´e du principe de Tarski–Seidenberg, Bull. Soc. Math. France, 118 (1990), pp. 101–126.

    Google Scholar 

  30. S. Heinz, Complexity of integer quasiconvex polynomial optimization, Journal of Complexity, 21 (2005), pp. 543–556.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Hemmecke, M. K¨oppe, J. Lee, and R. Weismantel, Nonlinear integer programming, in 50 Years of Integer Programming 1958–2008, M. J¨unger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L.Wolsey, eds., Springer-Verlag, 2010.

    Google Scholar 

  32. R. Hemmecke, S. Onn, and R. Weismantel, A polynomial oracle-time algorithm for convex integer minimization, Mathematical Programming, Series A (2009). Published online 06 March 2009.

    Google Scholar 

  33. R. Hildebrand and M. K¨oppe, A faster algorithm for quasi-convex integer polynomial optimization. eprint arXiv:1006.4661 [math.OC], 2010.

    Google Scholar 

  34. D. Hochbaum, Complexity and algorithms for nonlinear optimization problems, Annals of Operations Research, 153 (2007), pp. 257–296.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Iwata, A faster scaling algorithm for minimizing submodular functions, SIAM Journal on Computing, 32 (2003), pp. 833–840.

    Article  MATH  MathSciNet  Google Scholar 

  36. Submodular function minimization, Mathematical Programming, 112 (2008), pp. 45–64.

    Google Scholar 

  37. R.G. Jeroslow, There cannot be any algorithm for integer programming with quadratic constraints, Operations Research, 21 (1973), pp. 221–224.

    Article  MATH  MathSciNet  Google Scholar 

  38. J.P. Jones, Universal diophantine equation, Journal of Symbolic Logic, 47 (1982), pp. 403–410.

    Article  MathSciNet  Google Scholar 

  39. J.P. Jones and Yu. V. Matiyasevich, Proof of recursive unsolvability of Hilbert’s tenth problem, The American Mathematical Monthly, 98 (1991), pp. 689–709.

    Article  MATH  MathSciNet  Google Scholar 

  40. L.G. Khachiyan, Convexity and complexity in polynomial programming, in Proceedings of the International Congress of Mathematicians, August 16–24, 1983, Warszawa, Z. Ciesielski and C. Olech, eds., New York, 1984, North-Holland, pp. 1569–1577.

    Google Scholar 

  41. L.G. Khachiyan and L. Porkolab, Integer optimization on convex semialgebraic sets., Discrete and Computational Geometry, 23 (2000), pp. 207–224.

    Article  MATH  MathSciNet  Google Scholar 

  42. J.C. Lagarias, On the computational complexity of determining the solvability or unsolvability of the equation x2 − dy2 = −1, Transactions of the American Mathematical Society, 260 (1980), pp. 485–508.

    MATH  MathSciNet  Google Scholar 

  43. Succinct certificates for the solvability of binary quadratic diophantine equations. e-print arXiv:math/0611209v1, 2006. Extended and updated version of a 1979 FOCS paper.

    Google Scholar 

  44. J. Lee, S. Onn, and R. Weismantel, Nonlinear optimization over a weighted independence system, IBM Research Report RC24513 (2008).

    Google Scholar 

  45. On test sets for nonlinear integer maximization, Operations Research Letters, 36 (2008), pp. 439–443.

    Google Scholar 

  46. H.W. Lenstra, Integer programming with a fixed number of variables, Mathematics of Operations Research, 8 (1983), pp. 538–548.

    Article  MATH  MathSciNet  Google Scholar 

  47. K. Manders and L. Adleman, NP-complete decision problems for binary quadratics, J. Comp. Sys. Sci., 16 (1978), pp. 168–184.

    Article  MATH  MathSciNet  Google Scholar 

  48. Yu. V. Matiyasevich, Enumerable sets are diophantine, Doklady Akademii Nauk SSSR, 191 (1970), pp. 279–282. (Russian); English translation, Soviet Mathematics Doklady, Vol. 11 (1970), pp. 354–357.

    Google Scholar 

  49. Hilbert’s tenth problem, The MIT Press, Cambridge, MA, USA, 1993.

    Google Scholar 

  50. S.T. McCormick, Submodular function minimization, in Discrete Optimization, K. Aardal, G. Nemhauser, and R. Weismantel, eds., Vol. 12 of Handbooks in Operations Research and Management Science, Elsevier, 2005.

    Google Scholar 

  51. T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Tur´an, Canadian Journal of Mathematics, 17 (1965), pp. 533–540.

    Article  MATH  MathSciNet  Google Scholar 

  52. W.T. Obuchowska, On boundedness of (quasi-)convex integer optimization problems, Math. Meth. Oper. Res., 68 (2008).

    Google Scholar 

  53. S. Onn, Convex discrete optimization. eprint arXiv:math/0703575, 2007.

    Google Scholar 

  54. J.B. Orlin, A faster strongly polynomial time algorithm for submodular function minimization, Math. Program., Ser. A, 118 (2009), pp. 237–251.

    Google Scholar 

  55. P.M. Pardalos, ed., Complexity in Numerical Optimization, World Scientific, 1993.

    Google Scholar 

  56. M. Queyranne, Minimizing symmetric submodular functions, Mathematical Programming, 82 (1998), pp. 3–12.

    MATH  MathSciNet  Google Scholar 

  57. J. Renegar, On the computational complexity and geometry of the first-order theory of the reals, part I: Introduction. Preliminaries. The geometry of semialgebraic sets. The decision problem for the existential theory of the reals, Journal of Symbolic Computation, 13 (1992), pp. 255–300.

    Google Scholar 

  58. On the computational complexity and geometry of the first-order theory of the reals, part II: The general decision problem. Preliminaries for quantifier elimination, Journal of Symbolic Computation, 13 (1992), pp. 301–328.

    Google Scholar 

  59. On the computational complexity and geometry of the first-order theory of the reals. part III: Quantifier elimination, Journal of Symbolic Computation, 13 (1992), pp. 329–352.

    Google Scholar 

  60. On the computational complexity of approximating solutions for real algebraic formulae, SIAM Journal on Computing, 21 (1992), pp. 1008–1025.

    Google Scholar 

  61. C.L. Siegel, Zur Theorie der quadratischen Formen, Nachrichten der Akademie der Wissenschaften in G¨ottingen, II, Mathematisch-Physikalische Klasse, 3 (1972), pp. 21–46.

    Google Scholar 

  62. T. Skolem, Diophantische Gleichungen, Vol. 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 1938.

    Google Scholar 

  63. S.P. Tarasov and L.G. Khachiyan, Bounds of solutions and algorithmic complexity of systems of convex diophantine inequalities, Soviet Math. Doklady, 22 (1980), pp. 700–704.

    MATH  Google Scholar 

  64. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, Series 2, 42 (1936), pp. 230–265. Errata in ibidem, 43 (1937):544–546.

    Google Scholar 

  65. S.A. Vavasis, Polynomial time weak approximation algorithms for quadratic programming, in Pardalos [55].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Köppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Köppe, M. (2012). On the Complexity of Nonlinear Mixed-Integer Optimization. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1927-3_19

Download citation

Publish with us

Policies and ethics