Skip to main content

Time-Dependent Dielectric Breakdown (TDDB) and Future Directions

  • Chapter
  • First Online:
Metal-Dielectric Interfaces in Gigascale Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 157))

  • 1736 Accesses

Abstract

More and more attention has been devoted to the thermal and electrical stability of metal–dielectric interfaces in microelectronic devices. One of the major driving forces is the need to understand the mechanisms of dielectric breakdown with different metal–dielectric interfaces. A dielectric will always break down under severe stress, but an unstable metal–dielectric interface will generally cause an early breakdown and thereby shorten the dielectric lifetime. Therefore, it is important to understand the link behind dielectric degradation and interface stability in order to accurately estimate the operating lifetime of electronic devices. Here we will discuss some of the proposed mechanisms regarding this issue, and correlate them with the thermal and electrical stability results of the interfaces presented in the previous chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.-C. Chen, S.E. Holland, C. Hu, Electrical breakdown in thin gate and tunneling oxides. IEEE J. Solid-St. Circ. 20(1), 333–342 (1985)

    Article  Google Scholar 

  2. J.W. McPherson, H.C. Mogul, Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films. J. Appl. Phys. 84, 1513–1523 (1998)

    Article  Google Scholar 

  3. J.W. McPherson, Determination of the nature of molecular bonding in silica from time-dependent dielectric breakdown data. J. Appl. Phys. 95(12), 8101–8109 (2004)

    Article  Google Scholar 

  4. J.W. McPherson, R.B. Khamankar, A. Shanware, Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88(9), 5351–5359 (2000)

    Article  Google Scholar 

  5. J. Lee, I.C. Chen, C. Hu, Statistical modeling of silicon dioxide reliability. in IRPS, vol. 26, pp. 131–138 (1988)

    Google Scholar 

  6. J.R. Lloyd, E. Liniger, T.-M. Shaw, Simple model for time-dependent dielectric breakdown in inter- and intralevel low-k dielectric. J. Appl. Phys. 98(8), 084109 (2005)

    Article  Google Scholar 

  7. J. McPherson, V. Reddy, K. Banerjee, L. Huy, Comparison of E and 1/E TDDB models for SiO 2 under long-term/low-field test conditions. in IEDM Technical Digest, (1998), pp. 171–174

    Google Scholar 

  8. R. Gonella, Key reliability issues for copper integration in damascene architecture. Microelectron. Eng. 55(1–4), 245–255 (2001)

    Article  Google Scholar 

  9. L. Zhao, Z. Tökei, K. Croes, C.J. Wilson, M. Baklanov, G.P. Beyer, C. Claeys, Direct observation of the 1/E dependence of time dependent dielectric breakdown in the presence of copper. Appl. Phys. Lett. 98, 032107 (1–3) (2011)

    Google Scholar 

  10. F. Chen, O. Bravo, K. Chanda, P. McLaughlin, T. Sullivan, J. Gill, J. Lloyd, R. Kontra, J. Aitken, A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime model development. inIRPS, vol. 44, pp. 46–53 (2006)

    Google Scholar 

  11. N. Suzumura, S. Yamamoto, D. Kodama, K. Makabe, J. Komori, E. Murakami, S. Maegawa, K. Kubota, A new TDDB degradation model based on Cu ion drift in Cu interconnect dielectrics. in IRPS, vol. 44, pp. 484–489 (2006)

    Google Scholar 

  12. A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), p. 37

    Google Scholar 

  13. W. Wu, X. Duan, J.S. Yuan, Modeling of time-dependent dielectric breakdown in copper metallization. IEEE Trans. Device Mater Rel. 3(2), 26–30 (2003)

    Article  Google Scholar 

  14. R.S. Achanta, W.N. Gill, J.L. Plawsky, Copper ion drift in integrated circuits: effect of boundary conditions on reliability and breakdown of low-k dielectric. J. Appl. Phys. 103(1), 014907 (2008)

    Article  Google Scholar 

  15. R.S. Achanta, J.L. Plawsky, W.N. Gill, A time dependent dielectric breakdown model for field accelerated low-k breakdown due to copper ions. Appl. Phys. Lett. 91(23), 234106 (2007)

    Article  Google Scholar 

  16. J. Kim, E.T. Ogawa, J.W. McPherson, Time dependent dielectric breakdown characteristics of low-k dielectric (SiOC) over a wide range of test areas and electric fields. in IRPS, vol. 45, pp. 399–404 (2007)

    Google Scholar 

  17. M. He, S. Novak, L. Vanamurthy, H. Bakhru, J. Plawsky, T.-M. Lu, Cu penetration into low-k dielectric during deposition and bias-temperature stress. Appl. Phys. Lett. 97(25), 252901 (2010)

    Article  Google Scholar 

  18. K. Maex, M.R. Baklanov, D. Shamiryan, F. lacopi, S.H. Brongersma, Z.S. Yanovitskaya, Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793–8841 (2003)

    Article  Google Scholar 

  19. C. Jezewski, W.A. Lanford, J.J. Senkevich, C.J. Wiegand, A. Mallikarjunan, D. Lu, G.-C. Wang, T.-M. Lu, C. Jin, Molecular Caulking™: a pore sealing chemical vapor deposited polymer for ultra-low k dielectrics. J. Electrochem. Soc. 151(7), F157–F161 (2004)

    Google Scholar 

  20. T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 21(42), 425205 (2010)

    Article  Google Scholar 

  21. J. Pushkar, S.J. Jasbir, A. Mallikarjunan, E.J. Rymaszewski, T.-M. Lu, Copper drift in high-dielectric-constant tantalum oxide thin films under bias temperature stress. Appl. Phys. Lett. 88(14), 143502 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

He, M., Lu, TM. (2012). Time-Dependent Dielectric Breakdown (TDDB) and Future Directions. In: Metal-Dielectric Interfaces in Gigascale Electronics. Springer Series in Materials Science, vol 157. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1812-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1812-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1811-5

  • Online ISBN: 978-1-4614-1812-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics