Skip to main content

Cu-Dielectric Interfaces

  • Chapter
  • First Online:
Metal-Dielectric Interfaces in Gigascale Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 157))

  • 1313 Accesses

Abstract

Since Al was replaced by Cu for high-end IC products in 1997, the stability of the Cu–dielectric interface has become an increasingly important topic. In the dual damascene interconnect structure, Cu interconnects are surrounded by various barriers. The Cu lines are capped with a dielectric layer of materials, which is used as a diffusion barrier and an etch-stop layer. Cu migration through the capping layer is an increasingly serious concern because this layer is moving from a conventional dense material (Si3N4 ) to lower-k barrier materials such as SiC, SiCO, and SiCN. The sidewalls of the Cu lines are encapsulated by metallic diffusion barrier materials, which also present a problem. It is increasingly more challenging to contain Cu within the interconnect lines because the aggressive shrinking of via and trench size requires thinner barrier layers. The local depletion of barrier layers may eventually expose Cu directly to the low-k interlayer dielectrics. In addition, the stability of barrier metals themselves with low-k dielectrics could also be an issue under bias-temperature stress. In any event, the stability of Cu–dielectric interfaces has become a pressing issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Rosenberg, D.C. Edelstein, C.K. Hu, K.P. Rodbell, Copper metallization for high performance silicon technology. Annu. Rev. Mater. Sci. 30(1), 229–262 (2000)

    Article  Google Scholar 

  2. Y.H. Wang, M.R. Moitreyee, R. Kumar, L. Shen, K.Y. Zeng, J.W. Chai, J.S. Pan, A comparative study of low dielectric constant barrier layer, etch stop and hardmask films of hydrogenated amorphous Si-(C, O, N). Thin Solid Films 460(1–2), 211–216 (2004)

    Article  Google Scholar 

  3. J.D. McBrayer, R.M. Swanson, T.W. Sigmon, Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 133(6), 1242–1246 (1986)

    Article  Google Scholar 

  4. J. Palleau, J.C. Oberlin, F. Braud, J. Torres, J.L. Mermet, M.-J. Mouche, A. Ermolieff, J. Piaget, Refractory metal encapsulation in copper wiring, in Materials Research Society Symposium Proceedings, April, vol. 337, pp. 225–231 (1994)

    Google Scholar 

  5. B.G. Willis, D.V. Lang, Oxidation mechanism of ionic transport of copper in SiO2 dielectrics. Thin Solid Films 467(1–2), 284–293 (2004)

    Article  Google Scholar 

  6. Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, Copper transport in thermal SiO2. J. Electrochem. Soc. 140(8), 2427–2432 (1993)

    Article  Google Scholar 

  7. G. Raghavan, C. Chiang, P.B. Anders, S.-M. Tzeng, R. Villasol, G. Bai, M. Bohr, D.B. Fraser, Diffusion of copper through dielectric films under bias temperature stress. Thin Solid Films 262(1–2), 168–176 (1995)

    Article  Google Scholar 

  8. S.P. Murarka, I.V. Verner, R.J. Gutmann, Copper-Fundamental Mechanisms for Microelectronic Applications (Wiley, New York, 2000), p. 157

    Google Scholar 

  9. I. Fisher, M. Eizenberg, Copper ion diffusion in porous and nonporous SiO2-based dielectrics using bias thermal stress and thermal stress tests. Thin Solid Films 516(12), 4111–4121 (2008)

    Article  Google Scholar 

  10. J.-C. Chiou, H.I. Wang, M.-C. Chen, Dielectric degradation of Cu/SiO2/Si structure during thermal annealing. J. Electrochem. Soc. 143(3), 990–994 (1996)

    Article  Google Scholar 

  11. V.S.C. Len, R.E. Hurley, N. McCusker, D.W. McNeill, B.M. Armstrong, H.S. Gamble, An investigation into the performance of diffusion barrier diffusion barrier materials against copper diffusion using metal-oxide-semiconductor (MOS) capacitor structures. Solid-State Electron. 43(6), 1045–1049 (1999)

    Article  Google Scholar 

  12. H. Nishino, T. Fukuda, H. Yanazawa, H. Matsunaga, Analysis of leakage current in Cu/SiO2/Si/Al capacitors under bias-temperature stress. Jpn. J. Appl. Phys. 42, 6384 (2003)

    Article  Google Scholar 

  13. S.-S. Hwang, S.-Y. Jung, Y.-C. Joo, Leakage current characteristic of pre-damaged interlayer dielectric during voltage ramp method, in IRPS, vol. 45, pp. 628–629 (2007)

    Google Scholar 

  14. T. Fukuda, H. Nishino, A. Matsuura, H. Matsunaga, Force driving Cu diffusion into interlayer dielectrics. Jpn. J. Appl. Phys. 41, L537 (2002)

    Article  Google Scholar 

  15. M. Lenglet, K. Kartouni, J. Machefert, J.M. Claude, P. Steinmetz, E. Beauprez, J. Heinrich, N. Celati, Low temperature oxidation of copper: the formation of CuO. Mater. Res. Bull. 30(4), 393–403 (1995)

    Article  Google Scholar 

  16. O.R. Rodriguez, W.N. Gill, J.L. Plawsky, T.Y. Tsui, S. Grunow, Study of Cu diffusion in porous dielectrics using secondary-ion-mass spectrometry. J. Appl. Phys. 98(12), 123514 (2005)

    Article  Google Scholar 

  17. K.-S. Kim, Y.-C. Joo, K.-B. Kim, J.-Y. Kwon, Extraction of Cu diffusivities in dielectric materials by numerical calculation and capacitance-voltage measurement. J. Appl. Phys. 100(6), 063517 (2006)

    Article  Google Scholar 

  18. P.-T. Liu, T.-C. Chang, Y.-L. Yang, Y.-F. Cheng, J.-K. Lee, F.-Y. Shih, E. Tsai, G. Chen, S.M. Sze, Improvement on intrinsic electrical properties of low-k hydrogen silsesquioxane/copper interconnects employing deuterium plasma treatment. J. Electrochem. Soc. 147(3), 1186–1192 (2000)

    Article  Google Scholar 

  19. K.-L. Fang, B.-Y. Tsui, Metal drift induced electrical instability of porous low dielectric constant film. J. Appl. Phys. 93(9), 5546–5550 (2003)

    Article  Google Scholar 

  20. A.L.S. Loke, J.T. Wetzel, P.H. Townsend, T. Tanabe, R.N. Vrtis, M.P. Zussman, D. Kumar, C. Ryu, S.S. Wong, Kinetics of copper drift in low-k polymer interlevel dielectrics. IEEE Trans. Electron Devices 46(11), 2178–2187 (1999)

    Article  Google Scholar 

  21. H. Cui, I.B. Bhat, S.P. Murarka, H. Lu, W.-J. Hsia, W. Catabay, Copper drift in methyl-doped silicon oxide film. J. Vac. Sci. Technol. B 20(5), 1987–1993 (2002)

    Article  Google Scholar 

  22. P.I. Wang, J.S. Juneja, Y. Ou, T.-M. Lu, G.S. Spencer, Instability of metal barrier with porous methyl silsesquioxane films. J. Electrochem. Soc. 155(2), H53–H58 (2008)

    Article  Google Scholar 

  23. M. He, S. Novak, L. Vanamurthy, H. Bakhru, J. Plawsky, T.-M. Lu, Cu penetration into low-k dielectric during deposition and bias-temperature stress. Appl. Phys. Lett. 97(25), 252901 (2010)

    Article  Google Scholar 

  24. J.-N. Sun, D.W. Gidley, T.L. Dull, E.F. William, F.Y. Albert, E.T. Ryan, S. Lin, J. Wetzel, Probing diffusion barrier integrity on porous silica low-k thin films using positron annihilation lifetime spectroscopy. J. Appl. Phys. 89(9), 5138–5144 (2001)

    Article  Google Scholar 

  25. K.C. Aw, N.T. Salim, W. Gao, Z. Li, Characterization of spin-on-glass very-low-k polymethylsiloxane with copper metallization. Thin Solid Films 504(1–2), 243–247 (2006)

    Article  Google Scholar 

  26. Y. Ou, P.I. Wang, M. He, T.-M. Lu, P. Leung, T.A. Spooner, Conduction mechanisms of Ta/porous SiCOH films under electrical bias. J. Electrochem. Soc. 155(12), G283–G286 (2008)

    Article  Google Scholar 

  27. A. Mallikarjunan, C. Wiegand, J.S. Jay, G.R. Yang, E. Williams, T.-M. Lu, Hindered copper ion penetration in Parylene-N films. Electrochem. Solid-State Lett. 6(8), F28–F29 (2003)

    Article  Google Scholar 

  28. P.I. Wang, Z. Wu, T.-M. Lu, V.I. Leonard, A novel polycarbosilane-based low-k dielectric material. J. Electrochem. Soc. 153(4), G267–G271 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

He, M., Lu, TM. (2012). Cu-Dielectric Interfaces. In: Metal-Dielectric Interfaces in Gigascale Electronics. Springer Series in Materials Science, vol 157. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1812-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1812-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1811-5

  • Online ISBN: 978-1-4614-1812-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics