Skip to main content

Unconventional Computing, Novel Hardware for

  • Reference work entry
Computational Complexity
  • 251 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Constructing Electrical Analog of Reaction-Diffusion Systems

Digital CMOS Reaction‐Diffusion Chips

Analog CMOS Reaction‐Diffusion Chip

Reaction-Diffusion Computing Devices Based on Minority-Carrier Transport in Semiconductors

Single‐Electron Reaction‐Diffusion System

Collision‐Based RD Computers

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Analog circuit:

An electronic circuit that operates with currents and voltages that vary continuously with time and have no abrupt transitions between levels. Since most physical quantities, e. g., velocity and temperature, vary continuously, as does audio, an analog circuit provides the best means of representing them.

Current mirror:

A circuit that copies single input current to single (or multiple) output nodes. Two types of current mirrors exist; nMOS for current sinks and pMOS for current sources. Combining both types of current mirrors, one can invert a direction of currents; e. g., sink to source or source to sink.

Digital circuit:

An electronic circuit that can take on only a finite number of states. Binary (two-state) digital circuits are the most common. The two possible states of a binary circuit are represented by the binary digits, or bits, 0 and 1. The simplest forms of digital circuits are built from logic gates, the building blocks of the digital computer.

Diode:

A device that allows current flow only in one direction. Chemical diode allows for propagation of chemical waves only in one direction.

Flip-flop circuit:

A synchronous bistable device where the output changes state only when the clock input is triggered. That is, changes in the output occur in synchronization with the clock.

Floating‐gate transistor:

A device consisting of a control gate, floating gate and the thin oxide layer; when floating gate is given an electrical charge, the charge is trapped in the insulating think oxide layer. The transistors are used as non‐volatile storage devices because they store electrical charge for a long time without powering.

LSI, large-scale integration circuit:

An electronic circuit built on a semiconductor substrate, usually one of single‐crystal silicon. It contains from 100 to 1000 transistors. Some LSI circuits are analog devices; an operational amplifier is an example. Other LSI circuits, such as the microprocessors used in computers, are digital devices.

Minority‐carrier transport:

A physical phenomenon in forwardly‐biased semiconductor pn junctions. Minority carriers are generated in both area of p- and n‑type semiconductors. For p‑type semiconductors, the minority carriers are electrons, while they are holes in n‑type semiconductors. Once minority carriers are generated, they diffuse among the semiconductor and finally disappears by the recombination of electrons and holes.

nMOS FET:

Abbreviation of n‑type metal-oxide‐semiconductor field effect transistor, where semiconductor is negatively charged so the transistors are controlled by movement of electrons; these transistors have three modes of operation: cut-off, triode, and saturation (active).

pMOS FET:

A device which works by analogy to nMOS FET but the transistors are moved on and off by movement of electron vacancies.

Single‐electron circuit:

An electrical circuit that is functionally constructed by controlling movements of single electrons. Single‐electron circuit consists of tunneling junctions and electrons are controlled by using physical phenomena called the Coulomb blockade.

Bibliography

  1. Adamatzky A (1994) Reaction–diffusion algorithm for constructing discrete generalized Voronoi diagram. Neural Netw World 6:635–643

    Google Scholar 

  2. Adamatzky A (1996) Voronoi–like partition of lattice in cellular automata. Mathl Comput Modeling 23:51–66

    Article  MathSciNet  MATH  Google Scholar 

  3. Adamatzky A (1998) Universal dynamical computation in multi‐dimensional excitable lattices. Int J Theor Phys 37:3069–3108

    Article  MathSciNet  MATH  Google Scholar 

  4. Adamatzky A (2000) Reaction‐diffusion and excitable processors: A sense of the unconventional. Parallel Distrib Comput Theor Pract 3:113–132

    Google Scholar 

  5. Adamatzky A (2001) Computing in nonlinear media and automata collectives. Institute of Physics Publishing, Bristol

    Book  MATH  Google Scholar 

  6. Adamatzky A (ed) (2002) Collision‐based computing. Springer, London

    MATH  Google Scholar 

  7. Adamatzky A, De Lacy Costello B, Asai T (2005) Reaction‐diffusion computers. Elsevier, Amsterdam

    Google Scholar 

  8. Adamatzky A, Arena P, Basile A, Carmona‐Galán R, De Lacy Costello B, Fortuna L, Frasca M, Rodríguez‐Vázquez A (2004) Reaction‐diffusion navigation robot control: From chemical to VLSI analogic processors. IEEE Trans Circuit Syst I 51:926–938

    Google Scholar 

  9. Adamatzky A, De Lacy Costello BPJ (2002) Experimental logical gates in a reaction‐diffusion medium: The XOR gate and beyond. Phys Rev E 66:046112

    Article  Google Scholar 

  10. Adamatzky A, De Lacy Costello BPJ (2003) On some limitations of reaction‐diffusion computers in relation to Voronoi diagram and its inversion. Phys Lett A 309:397–406

    Article  MathSciNet  MATH  Google Scholar 

  11. Adamatzky A, De Lacy Costello BPJ (2002) Collision‐free path planning in the Belousov‐Zhabotinsky medium assisted by a cellular automaton. Naturwissenschaften 89:474–478

    Article  Google Scholar 

  12. Adamatzky A, De Lacy Costello B, Ratcliffe NM (2002) Experimental reaction‐diffusion pre‐processor for shape recognition. Phys Lett A 297:344–352

    Article  MATH  Google Scholar 

  13. Adamatzky A, Tolmachiev D (1997) Chemical processor for computation of skeleton of planar shape. Adv Mater Optics Electron 7:135–139

    Article  Google Scholar 

  14. Agladze K, Magome N, Aliev R, Yamaguchi T, Yoshikawa K (1997) Finding the optimal path with the aid of chemical wave. Physica D 106:247–254

    Article  Google Scholar 

  15. Alioto M, Palumbo G (2005) Model and design of bipolar and MOS current‐mode logic: CML, ECL and SCL digital circuits. Springer, Berlin

    Google Scholar 

  16. Asahi N, Akazawa M, Amemiya Y (1998) Single‐electron logic systems based on the binary decision diagram. IEICE Trans Electron E81-C:49–56

    Google Scholar 

  17. Asai T, Nishimiya Y, Amemiya Y (2002) A CMOS reaction‐diffusion circuit based on cellular‐automaton processing emulating the Belousov–Zhabotinsky reaction. IEICE Trans Fundam E85-A:2093–2096

    Google Scholar 

  18. Asai T, Adamatzky A, Amemiya Y (2004) Towards reaction‐diffusion computing devices based on minority‐carrier transport in semiconductors. Chaos Solit Fractals 20:863–876

    Article  MATH  Google Scholar 

  19. Asai T, Ikebe M, Hirose T, Amemiya Y (2005) A quadrilateral‐object composer for binary images with reaction‐diffusion cellular automata. Int J Parallel Emergent Distrib Syst 20:57–68

    Article  MathSciNet  MATH  Google Scholar 

  20. Asai T, De Lacy Costello B, Adamatzky A (2005) Silicon implementation of a chemical reaction‐diffusion processor for computation of Voronoi diagram. Int J Bifurc Chaos 15:3307–3320

    Article  Google Scholar 

  21. Asai T, Kanazawa Y, Hirose T, Amemiya Y (2005) Analog reaction‐diffusion chip imitating the Belousov–Zhabotinsky reaction with hardware Oregonator model. Int J Unconv Comput 1:123–147

    Google Scholar 

  22. Beato V, Engel H (2003) Pulse propagation in a model for the photosensitive Belousov–Zhabotinsky reaction with external noise. In: Schimansky‐Geier L et al (eds) Noise in complex systems and stochastic dynamics. Proc SPIE 5114:353–362

    Article  Google Scholar 

  23. Brandtstädter H, Braune M, Schebesch I, Engel H (2000) Experimental study of the dynamics of spiral pairs in light‐sensitive Belousov–Zhabotinskii media using an open-gel reactor. Chem Phys Lett 323:145–154

    Google Scholar 

  24. Daikoku T, Asai T, Amemiya Y (2002) An analog CMOS circuit implementing Turing's reaction‐diffusion model. Proc Int Symp Nonlinear Theor Appl 809–812

    Google Scholar 

  25. De Lacy Costello B, Adamatzky A (2003) On multitasking in parallel chemical processors: experimental findings. Int J Bifurc Chaos 13:521–533

    Article  MATH  Google Scholar 

  26. De Lacy Costello B, Adamatzky A, Ratcliffe N, Zanin AL, Liehr AW, Purwins HG (2004) The formation of Voronoi diagrams in chemical and physical systems: Experimental findings and theoretical models. Int J Bifurc Chaos 14:2187–2210

    Article  MATH  Google Scholar 

  27. Flessels JM, Belmonte A, and Gáspár V (1998) Dispersion relation for waves in the Belousov–Zhabotinsky reaction. J Chem Soc Faraday Trans 94:851–855

    Google Scholar 

  28. Fukai T (1996) Competition in the temporal domain among neural activities phase‐locked to subthreshold oscillations. Biol Cybern 75:453–461

    Article  MATH  Google Scholar 

  29. Furukawa Y, Yonezu H, Ojima K, Samonji K, Fujimoto Y, Momose K, Aiki K (2001) Control of N content of GaPN growun by molecular beam epitaxy and growth of GaPN lattice‐matched to Si(100) substrate. Jpn J Appl Phys 41:528–532

    Article  Google Scholar 

  30. Gerhardt M, Schuster H, Tyson JJ (1990) A cellular automaton model of excitable media. Physica D 46:392–415

    Article  MathSciNet  MATH  Google Scholar 

  31. Gravert H, Devoret MH (1992) Single charge tunneling – Coulomb blockade phenomena in nanostructures. Plenum, New York

    Google Scholar 

  32. Grill S, Zykov VS, Müller SC (1996) Spiral wave dynamics under pulsatory modulation of excitability. J Phys Chem 100:19082–19088

    Google Scholar 

  33. Karahaliloglu K, Balkir S (2005) Bio‐inspired compact cell circuit for reaction‐diffusion systems. IEEE Trans Circuits Syst II Express Briefs 52:558–562

    Google Scholar 

  34. Kuhnert L, Agladze KL, Krinsky VI (1989) Image processing using light‐sensitive chemical waves. Nature 337:244–247

    Article  Google Scholar 

  35. Kuwamura N, Taniguchi K, Hamakawa C (1994) Simulation of single‐electron logic circuits. IEICE Trans Electron J77-C-II:221–228

    Google Scholar 

  36. Kumakura K, Nakakoshi K, Motohisa J, Fukui T, Hasegawa H (1995) Novel formation method of quantum dot structures by self‐limited selective area metalorganic vapor phase epitaxy. Jpn J Appl Phys 34:4387–4389

    Article  Google Scholar 

  37. Kumakura K, Motohisa J, Fukui T (1997) Formation and characterization of coupled quantum dots (CQDs) by selective area metalorganic vapor phase epitaxy. J Crystal Growth 170:700–704

    Article  Google Scholar 

  38. Matsubara Y, Asai T, Hirose T, Amemiya Y (2004) Reaction‐diffusion chip implementing excitable lattices with multiple‐valued cellular automata. IEICE Electron Express 1:248–252

    Article  Google Scholar 

  39. Mohajerzadeh S, Nathan A, Selvakumar CR (1994) Numerical simulation of a p-n-p-n color sensor for simultaneous color detection. Sens Actuators A 44:119–124

    Article  Google Scholar 

  40. Muller DE (1954) Application of boolean algebra to switching circuit design and to error detection. IRE Trans Electr Comp EC-3:6–12

    Google Scholar 

  41. Niedernostheide FJ, Kreimer M, Kukuk B, Schulze HJ, Purwins HG (1994) Travelling current density filaments in multilayered silicon devices. Phys Lett A 191:285–290

    Article  Google Scholar 

  42. Oya T, Asai T, Fukui T, Amemiya Y (2002) A majority‐logic nanodevice using a balanced pair of single‐electron boxes. J Nanosci and Nanotech 2:333–342

    Article  Google Scholar 

  43. Oya T, Asai T, Fukui T, Amemiya Y (2005) Reaction‐diffusion systems consisting of single‐electron circuits. Int J Unconv Comput 1:123–147

    Google Scholar 

  44. Petrov V, Ouyang Q, Swinney HL (1997) Resonant formation in a chemical system. Nature 388:655–657

    Article  Google Scholar 

  45. Rambidi NG (1998) Neural network devices based on reaction‐duffusion media: An approach to artificial retina. Supramol Sci 5:765–767

    Article  Google Scholar 

  46. Rambidi NG, Yakovenchuk D (2001) Chemical reaction‐diffusion implementation of finding the shortest paths in a labyrinth. Phys Rev E63:0266071–0266076

    Article  Google Scholar 

  47. Rambidi NG, Shamayaev KE, Peshkov GY (2002) Image processing using light‐sensitive chemical waves. Phys Lett A 298:375–382

    Article  Google Scholar 

  48. Reed IS (1954) A class of multiple‐error‐correcting codes and their decoding scheme. IRE Trans Inform Th PGIT-4:38–49

    Google Scholar 

  49. Schebesch I, Engel H (1998) Wave propagation in heterogeneous excitable media. Phys Rev E 57:3905–3910

    Article  Google Scholar 

  50. Serrano‐Gotarredona T, Linares‐Barranco B (2003) Log‐domain implementation of complex dynamics reaction‐diffusion neural networks. IEEE Trans Neural Networks 14:1337–1355

    Google Scholar 

  51. Shelar RS, Sapatnekar SS (2001) BDD decomposition for the synthesis of high performance PTL circuits. Workshop Notes IEEE IWLS 2001 298–303

    Google Scholar 

  52. Song M, Asada K (1998) Design of low power digital VLSI circuits based on a novel pass‐transistor logic. IEICE Trans Electron E81-C:1740–1749

    Google Scholar 

  53. Soeleman H, Roy K, Paul BC (2001) Robust subthreshold logic for ultra-low power operation. IEEE Trans VLSI Syst 9:90–99

    Article  Google Scholar 

  54. Steinbock O, Toth A, Showalter K (1995) Navigating complex labyrinths: optimal paths from chemical waves. Science 267:868–871

    Article  Google Scholar 

  55. Suzuki Y, Takayama T, Motoike IN, Asai T (2007) Striped and spotted pattern generation on reaction‐diffusion cellular automata: Theory and LSI implementation. Int J Unconv Comput 3:1–13

    Google Scholar 

  56. Tóth Á, Gáspár V, Showalter K (1994) Propagation of chemical waves through capillary tubes. J Phys Chem 98:522–531

    Google Scholar 

  57. Tóth Á, Showalter K (1995) Logic gates in excitable media. J Chem Phys 103:2058–2066

    Google Scholar 

  58. Wang J (2001) Light‐induced pattern formation in the excitable Belousov–Zhabotinsky medium. Chem Phys Lett 339:357–361

    Article  Google Scholar 

  59. Yamada T, Akazawa M, Asai T, Amemiya Y (2001) Boltzmann machine neural network devices using single‐electron tunneling. Nanotechnology 12:60–67

    Article  Google Scholar 

  60. Yamada K, Asai T, Hirose T, Amemiya Y (2008) On digital LSI circuits exploiting collision‐based fusion gates. Int J Unconv Comput 4:45–59

    Google Scholar 

  61. Yoneyama M (1996) Optical modification of wave dynamics in a surface layer of the Mn‐catalyzed Belousov–Zhabotinsky reaction. Chem Phys Lett 254:191–196

    Article  Google Scholar 

  62. Young DA (1984) A local activator‐inhibitor model of vertebrate skin patterns. Math Biosci 72:51–58

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Asai, T. (2012). Unconventional Computing, Novel Hardware for. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_202

Download citation

Publish with us

Policies and ethics