Skip to main content

Self-Replication and Cellular Automata

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Von Neumann's Universal Constructor

Self‐Replication for Artificial Life

Other Approaches to Self‐Replication

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cellular automaton:

A cellular automaton (CA) is a mathematical framework modeling an array of cells that interact locally with their neighbors. In this cellular space, each cell has a set of neighbors, cells have values or states, all the cells update their values simultaneously at discrete time steps or iterations, and the new state of a cell is determined by the current state of its neighbors (including itself) according to a local function or rule, identical for all cells. In the article, the term is extended to account for systems that introduce variations to the basic definition (for example, systems where cells do not update simultaneously or do not have the same set of rules in every cell).

Following the historical pattern, in the article the same term is also used to refer to an object or structure built within the cellular space, i. e., a set of cells in a particular, usually active, state (overlapping with the definition of Configuration).

Configuration:

A set of cells in a given state at a given time. Usually, but not always, the term refers to the state of all the cells in the entire space. The initial configuration is the state of the cells at time \( { t=0 } \).

Self‐replication:

The process whereby a cellular automaton configuration creates a copy of itself in the cellular space. Incidentally, you will note that in the article we use the terms self‐replication and self‐reproduction interchangeably. In reality, the two terms are not really synonyms: self‐reproduction is more properly applied to the reproduction of organisms, while self‐replication concerns the cellular level. The more correct term to use in most cases would probably be self‐replication, but since von Neumann favored self‐reproduction, we will ignore the distinction.

Self‐reproduction:

See Self‐Replication

Construction:

The process that occurs when one or more cells, initially in the inactive or quiescent state are assigned an active state (in the context of this article, by the self‐replicating structure).

Bibliography

  1. Asprey W (1992) John von Neumann and the Origins of Modern Computing. The MIT Press, Cambridge

    Google Scholar 

  2. Banks ER (1970) Universality in Cellular Automata. In: Proc. IEEE 11th Annual Symposium on Switching and Automata Theory, Santa Monica, CA, pp 194-215

    Google Scholar 

  3. Beuchat J-L, Haenni J-O (2000) Von Neumann's 29-State Cellular Automaton: A Hardware Implementation. IEEE Trans Education 43(3):300–308

    Article  Google Scholar 

  4. Buckley WR, Mukherjee A (2005) Constructibility of Signal‐Crossing Solutions in von Neumann 29-State Cellular Automata. Proc. 2005 Int. Conf. on Computational Science. LNCS, vol 3515.Springer, Berlin, pp 395–403

    Google Scholar 

  5. Burks A (ed) (1970) Essays on Cellular Automata. University of Illinois Press, Urbana

    MATH  Google Scholar 

  6. Byl J (1989) Self‐Reproduction in Small Cellular Automata. Physica D 34:295–299

    Article  MathSciNet  MATH  Google Scholar 

  7. Chou H-H, Reggia JA (1997) Emergence of self‐replicating structures in a cellular automata space. Physica D 110(3-4):252–276

    Article  MATH  Google Scholar 

  8. Chou H-H, Reggia JA (1998) Problem solving during artificial selection of self‐replicating loops. Physica D 115(3-4):293–312

    Article  MATH  Google Scholar 

  9. Codd EF (1968) Cellular Automata. Academic Press, New York

    MATH  Google Scholar 

  10. Freitas RA Jr, Gilbreath WP (eds) (1980) Advanced Automation for Space Missions. In: Proc. 1980 NASA/ASEE Summer Study, Scientific and Technical Information Branch (available from U.S. G.P.O.), Washington, DC

    Google Scholar 

  11. Freitas RA Jr, Merkle RC (2004) Kinematic Self‐Replicating Machines. Landes Bioscience, Georgetown

    Google Scholar 

  12. Ibanez J, Anabitarte D, Azpeitia I, Barrera O, Barrutieta A, Blanco H, Echarte F (1995) Self‐inspection based reproduction in cellular automata. In: Proc. 3rd European Conf. on Artificial Life (ECAL95). LNCS, vol 929. Springer, Berlin, pp 564–576

    Google Scholar 

  13. Imai K, Hori T, Morita K (2002) Self‐reproduction in three‐dimensional reversible cellular space. Artif Life 8(2):155–174

    Article  Google Scholar 

  14. Langton CG (1984) Self‐Reproduction in Cellular Automata. Physica D 10:135–144

    Article  Google Scholar 

  15. Lee C (1968) Synthesis of a Cellular Computer. In: Applied Automata Theory. Academic Press, London, pp 217–234

    Google Scholar 

  16. Lohn JD, Reggia JA (1997) Automatic Discovery of Self‐Replicating Structures in Cellular Automata. IEEE Trans Evol Comput 1(3):165–178

    Article  Google Scholar 

  17. Mange D, Sipper M, Stauffer A, Tempesti G (2000) Towards Robust Integrated Circuits: The Embryonics Approach. Proc IEEE 88(4):516–541

    Article  Google Scholar 

  18. Mange D, Stauffer A, Petraglio E, Tempesti G (2004) Self‐replicating loop with universal construction. Physica D 191:178–192

    Article  MathSciNet  MATH  Google Scholar 

  19. Mange D, Stauffer A, Peparolo L, Tempesti G (2004) A Macroscopic View of Self‐Replication. Proc IEEE 92(12):1929–1945

    Article  Google Scholar 

  20. Morita K, Imai K (1996) Self‐reproduction in a reversible cellular space. Theor Comput Sci 168:337–366

    Article  MathSciNet  MATH  Google Scholar 

  21. Nehaniv CL (2002) Self‐Reproduction in Asynchronous Cellular Automata. In: Proc. 2002 NASA/DoD Conf. on Evolvable Hardware (EH02). IEEE Computer Society, Washington, DC, pp 201–209

    Book  Google Scholar 

  22. Nourai F, Kashef RS (1975) A Universal Four-State Cellular Computer. IEEE Trans Comput 24(8):766–776

    Article  MATH  Google Scholar 

  23. Pan Z, Reggia J (2005) Evolutionary Discovery of Arbitrary Self‐replicating Structures. In: Proc. 5th Int. Conf. on Computational Science (ICCS 2005) - Part II. LNCS, vol 3515. Springer, Berlin, pp 404–411

    Google Scholar 

  24. Peper F, Isokawa T, Kouda N, Matsui N (2002) Self-Timed Cellular Automata and their computational ability. Future Gener Comput Syst 18(7):893–904

    Article  MATH  Google Scholar 

  25. Peper F, Lee J, Abo F, Isokawa T, Adaki S, Matsui N, Mashiko S (2004) Fault‐Tolerance in Nanocomputers: a Cellular Array Approach. IEEE Trans Nanotechnol 3(1):187–201

    Article  Google Scholar 

  26. Perrier J-Y, Sipper M, Zahnd J (1996) Toward a Viable, Self‐Reproducing Universal Computer. Physica D 97:335–352

    Article  MathSciNet  MATH  Google Scholar 

  27. Pesavento U (1995) An Implementation of von Neumann's Self‐Reproducing Machine. Artif Life 2(4):337–354

    Article  Google Scholar 

  28. Petraglio E, Tempesti G, Henry J-M (2002) Arithmetic Operations with Self‐Replicating Loops. In: Adamatsky A (ed) Collision‐Based Computing. Springer‐Verlag, London, pp 469-490

    Google Scholar 

  29. Reggia JA, Armentrout SA, Chou H-H, Peng Y (1993) Simple Systems That Exhibit Self‐Directed Replication. Science 259:1282–1287

    Article  MathSciNet  MATH  Google Scholar 

  30. Rossier J, Thoma Y, Mudry PA, Tempesti G (2006) MOVE Processors that Self‐Replicate and Differentiate. In: Proc. 2nd Int. Workshop on Biologically‐Inspired Approaches to Advanced Information Technology (Bio‐ADIT06). LNCS, vol 3853. Springer, Berlin, pp 328–343

    Google Scholar 

  31. Salzberg C, Antony A, Sayama H (2004) Evolutionary dynamics of cellular automata‐based self‐replicators in hostile environments. BioSystems 78:119–134

    Article  Google Scholar 

  32. Sayama H (1998) Introduction of Structural Dissolution into Langton's Self‐Reproducing Loop. In: Artificial Life VI, Proc. 6th Int. Conf. on Artificial Life, MIT Press, Cambridge, pp 114–122

    Google Scholar 

  33. Sayama H (2000) Self‐replicating worms that increase structural complexity through gene transmission. In: Artificial Life VII: Proc. 7th Int. Conf. on Artificial Life, MIT Press, Cambridge, pp 21–30

    Google Scholar 

  34. Sipper M (1995) Studying artificial life using a simple, general cellular model. Artif Life 2(1):1–35

    Article  Google Scholar 

  35. Sipper M, Mange D, Stauffer A (1997) Ontogenetic Hardware. BioSystems 44:193–207

    Article  Google Scholar 

  36. Stauffer A, Mange D, Petraglio E, Vannel F (2004) DSCA Implementation of 3D Self‐Replicating Structures. In: Proc. 6th Int. Conf. on Cellular Automata for Research and Industry (ACRI2004). LNCS, vol 3305. Springer, Berlin, pp 698–708

    Google Scholar 

  37. Stauffer A, Sipper M (2004) The Data-and‐Signals Cellular Automaton and Its Application to Growing Structures. Artif Life 10(4):463–477

    Article  Google Scholar 

  38. Takada Y, Isokawa T, Peper F, Matsui N (2006) Universal Construction and Self‐Reproduction on Self-Timed Cellular Automata. Int J Mod Phys C 17(7):985–1007

    Article  MATH  Google Scholar 

  39. Tempesti G (1995) A New Self‐Reproducing Cellular Automaton Capable of Construction and Computation. In: Proc. 3rd European Conf. on Artificial Life. LNAI, vol 929. Springer, Berlin, pp 555–563

    Google Scholar 

  40. Tempesti G (1998) A Self‐Repairing Multiplexer‐Based FPGA Inspired by Biological Processes. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL)

    Google Scholar 

  41. Trimberger S (ed) (1994) Field‐Programmable Gate Array Technology. Kluwer, Boston

    MATH  Google Scholar 

  42. Various (1999) A D&T Roundtable: Online Test. IEEE Design Test Comput 16(1):80–86

    Google Scholar 

  43. Vitanyi PMB (1973) Sexually reproducing cellular automata. Math Biosci 18:23–54

    Article  MathSciNet  MATH  Google Scholar 

  44. Burks AW (ed) von Neumann J (1966) The Theory of Self‐Reproducing Automata. University of Illinois Press, Urbana

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Tempesti, G., Mange, D., Stauffer, A. (2012). Self-Replication and Cellular Automata. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_172

Download citation

Publish with us

Policies and ethics