Skip to main content

High-Performance Computing for Neuroinformatics Using FPGA

  • Chapter
  • First Online:
High-Performance Computing Using FPGAs

Abstract

The brain represents information through the ensemble firing of neurons. These neural processes are difficult to study in vivo because they are highly non-linear, dynamical and often time-varying. Hardware systems, such as the FPGA-based platforms, are very efficient in doing such studies given their intrinsic parallelism, reconfigurability and real-time processing capability. We have successfully used the Xilinx Virtex-6 FPGA devices to prototype the generalized Laguerre–Volterra model (GLVM), which is a rigorous and well-functioning mathematical abstraction for the description of neural processes from a system input/output relationship standpoint. The hardware system first conducts GLVM parameters estimation using the neural firing data from experiments; then it is able to predict the neural firing outputs based on the field estimated model coefficients and the novel model inputs. The hardware system has been prototyped and is proved very efficient in this study compared to our previous software model running on the Intel Core i7-2620M CPU (with Turbo Boost to 3.4 GHz). It achieves up to a 2,662 times speedup in doing GLVM parameters estimation and a 699 times speedup in conducting neural firing outputs prediction. The calculation results are very precise with the NMSE being successfully controlled at the 10− 11 scale compared to the software approach. This FPGA-based architecture is also significant to the future cognitive neural prostheses design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Purves, E.M. Brannon, R. Cabeza, S.A. Huettel, K.S. LaBar, M.L. Platt, M. Woldorff, Principles of Cognitive Neuroscience (Sinauer Associates Inc., Sunderland, MA, USA, 2007)

    Google Scholar 

  2. B. Milner, Memory and the medial temporal regions of the brain, in Biology of Memory (Academic, New York, 1970), pp. 29–50

    Google Scholar 

  3. L.R. Squire, S.M. Zola, Episodic memory, semantic memory, and amnesia. Hippocampus 8, 205–211 (1998)

    Article  Google Scholar 

  4. M.S. Humayun, E. de Juan, J.D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, S. Suzuki, Pattern electrical simulation of the human retina. Vis. Res. 39, 2569–2576 (1999)

    Article  Google Scholar 

  5. G.E. Loeb, Gochelear prosthetics. Annu. Rev. Neurosci. 13, 357–371 (1990)

    Article  Google Scholar 

  6. G.E. Loeb, R.A. Peck, W.H. Moore, K. Hood, Biontm system for distributed neural prosthetic interfaces. Med. Eng. Phys. 23, 9–18 (2001)

    Article  Google Scholar 

  7. K.H. Mauritz, H.P. Peckham, Restoration of grasping functions in quadriplegic patients by functional electrical stimulation (FES). Int. J. Rehabil. Res. 10(4), 57–61 (1987)

    Google Scholar 

  8. J.P. Donoghue, Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5, 1085–1088 (2002)

    Article  Google Scholar 

  9. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)

    Article  Google Scholar 

  10. M.A.L. Nicolelis, Brain-machine interfaces to restore motor function and probe neural circuits. Nat. Neurosci. 4, 417–422 (2003)

    Google Scholar 

  11. K.V. Shenoy, D. Meeker, S.Y. Cao, S.A. Kureshi, B. Pesaran, C.A. Buneo, A.R. Batista, P.P. Mitra, J.W. Burdick, R.A. Andersen, Neural prosthetic control signals from plan activity. Neuroreport 14, 591–596 (2003)

    Article  Google Scholar 

  12. D.M. Taylor, S.I.H. Tillery, A.B. Schwartz, Information conveyed through brain-control: cursor versus robot. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 195–199 (2003)

    Article  Google Scholar 

  13. J.R. Wolpaw, D.J. McFarland, Control of a two-dimensionalmovement signal by a noninvasive brain-computer interfacein humans. Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004)

    Article  Google Scholar 

  14. T.W. Berger, G. Chauvet, R.J. Sclabassi, A biological based model of functional properties of the hippocampus. J. Physiol. 7, 1031–1064 (1982)

    Google Scholar 

  15. J. Magee, D. Hoffman, C. Colbert, D. Johnston, Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327–346 (1998)

    Article  Google Scholar 

  16. S.S. Dalal, V.Z. Marmarelis, T.W. Berger, A nonlinear positive feedback model of glutamatergic synaptic transmission in dentate gyrus, in Proceedings of the The 4th Joint Symposium on Neural Computation, vol. 7 (Institute for Neural Computation, San Diego, CA, USA, 1997), pp. 68–75

    Google Scholar 

  17. D. Song, Z. Wang, V.Z. Marmarelis, T.W. Berger, Non-parametric interpretation and validation of parametric models of short-term plasticity, in Proceedings of Annual International Conference of the IEEE EMBS (Institute of Electrical and Electronics Engineers, New York, NY, USA, 2003), pp. 1901–1904

    Google Scholar 

  18. Z. Wang, X. Xie, D. Song, T.W. Berger, Probabilistic transformation of temporal information at individual synapses, in Proceedings of Annual International Conference of the IEEE EMBS (Institute of Electrical and Electronics Engineers, New York, NY, USA, 2003), pp. 1909–1912

    Google Scholar 

  19. G. Gholmieh, S.H. Courellis, D. Song, Z. Wang, V.Z. Marmarelis, T.W. Berger, Characterization of short-term plasticity of the dentate gyrus-ca3 system using nonlinear systems analysis, in Proceedings of Annual International Conference of the IEEE EMBS (Institute of Electrical and Electronics Engineers, New York, NY, USA, 2003), pp. 1929–1932

    Google Scholar 

  20. A. Dimoka, S.H. Courellis, D. Song, V. Marmarelis, T.W. Berger, Identification of lateral and medial perforant path using single- and dual-input random impulse train stimulation, in Proceedings of Annual International Conference of the IEEE EMBS (Institute of Electrical and Electronics Engineers, New York, NY, USA, 2003), pp. 1933–1936

    Google Scholar 

  21. M.C. Citron, J.P. Kroeker, G.D. McCann, Nonlinear interactions in ganglion cell receptive fields. J. Neurophysiol. 46, 1161–1176 (1981)

    Google Scholar 

  22. M.C. Citron, R.C. Emerson, W.R. Levick, Nonlinear measurement and classification of receptive fields in cat retinal ganglion cells. Ann. Biomed. Eng. 16, 65–77 (1988)

    Article  Google Scholar 

  23. P.Z. Marmarelis, K.I. Naka, Nonlinear analysis and synthesis of receptive field responses in the catfish retina II: one-input white-noise analysis. J. Neurophysiol. 36, 619–633 (1973)

    Google Scholar 

  24. D. McAlpine, Creating a sense of auditory space. J. Physiol. 566, 21–28 (2005)

    Article  Google Scholar 

  25. L. Paninski, M.R. Fellows, N.G. Hatsopoulos, J.P. Donoghue, Spatiotemporal tuning of motor neurons for hand position and velocity. J. Neurophysiol. 91, 515–532 (2004)

    Article  Google Scholar 

  26. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  27. H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)

    Article  Google Scholar 

  28. Elementary Objects of the Nervous System. [Online]. Available: http://synapticmodeling.com/ Accessed January 2013

  29. Brain in Silicon. [Online]. Available: http://brainsinsilicon.stanford.edu Accessed January 2013

  30. NEURON. [Online]. Available: http://www.neuron.yale.edu/neuron/ Accessed January 2013

  31. Mcell: A Monte Carlo Simulator of Cellular Microphysiology. [Online]. Available: http://www.mcell.cnl.salk.edu/ Accessed January 2013

  32. J.P. Cunningham, V. Gilja, S.I. Ryu, K.V. Shenoy, Methods for estimating neural firing rates, and their application to brain-machine interfaces. Neural Networks 22(9), 1235–1246 (2009)

    Article  Google Scholar 

  33. D.R. Brillinger, Nerve cell spike train data analysis: a progression of technique. J. Am. Stat. Assoc. 87, 260–271 (1992)

    Article  Google Scholar 

  34. E.N. Brown, R. Barbieri, U.T. Eden, L.M. Frank, Likelihood methods for neural data analysis, in Computational Neuroscience: A Comprehensive Approach, vol. 7 (Chapman & Hall/CRC, London, UK, 2003), pp. 253–286

    Google Scholar 

  35. W. Wu, Y. Gao, E. Bienenstock, J. Donoghue, M. Black, Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput. 18(1), 80–118 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations (Dover, New York, 1959)

    MATH  Google Scholar 

  37. N. Wiener, Nonlinear Problems in Random Theory (MIT, New York, 1958)

    MATH  Google Scholar 

  38. V.Z. Marmarelis, P.Z. Marmarelis, Analysis of Physiological Systems: The White-Noise Approach (Plenum, New York, 1978)

    Book  Google Scholar 

  39. V.Z. Marmarelis, Nonlinear Dynamic Modeling of Physiological Systems (Wiley-IEEE Press, Hoboken, 2004)

    Book  Google Scholar 

  40. D. Song, R.H.M. Chan, V.Z. Marmarelis, R.E. Hampson, S.A. Deadwyler, T.W. Berger, Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Trans. Biomed. Eng. 54, 1053–1066 (2007)

    Article  Google Scholar 

  41. R.H.M. Chan, D. Song, T.W. Berger, Tracking temporal evolution of nonlinear dynamics in hippocampus using time-varying volterra kernels, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 54 (Institute of Electrical and Electronics Engineers, New York, NY, USA, 2008), pp. 4996–4999

    Google Scholar 

  42. D. Song, R.H.M. Chan, V.Z. Marmarelis, R.E. Hampson, S.A. Deadwyler, T.W. Berger, Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks 22, 1340–1351 (2009)

    Article  Google Scholar 

  43. S.A. Deadwyler, T. Bunn, R.E. Hampson, Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats. J. Neurosci. 16, 354–372 (1996)

    Google Scholar 

  44. B.E. Alger, R.A. Nicoll, Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J. Physiol. 328, 125–141 (1982)

    Google Scholar 

  45. J. Keat, P. Reinagel, R.C. Reid, M. Meister, Predicting every spike: a model for the responses of visual neurons. Neuron 30, 803–817 (2001)

    Article  Google Scholar 

  46. L. Paninski, J.W. Pillow, E.P. Simoncelli, Maximum likelihoodestimation of a stochastic integrate-and-fire neural encoding model. Neural Comput. 16, 2533–2561 (2004)

    Article  MATH  Google Scholar 

  47. D. Song, Z. Wang, T.W. Berger, Contribution of T-type VDCC to TEA-induced long-term synaptic modification in hippocampal CA1 and dentate gyrus. Hippocampus 12, 689–697 (2002)

    Article  Google Scholar 

  48. J.F. Storm, Action potential repolarization and a fast after-hyperpolarizationin rat hippocampal pyramidal cells. J. Physiol. 385, 733–759 (2002)

    Google Scholar 

  49. V.Z. Marmarelis, Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann. Biomed. Eng. 21, 573–589 (1993)

    Article  Google Scholar 

  50. C. Boukis, D.P. Mandic, A.G. Constantinides, L.C. Polymenakos, A novel algorithm for the adaptation of the pole of Laguerre filters. IEEE Signal Process. Lett. 13, 429–432 (2006)

    Article  Google Scholar 

  51. M.D. Linderman, G. Santhanam, C.T. Kemere, V. Gilja, S. O’Driscoll, B.M. Yu, A. Afshar, S.I. Ryu, K.V. Shenoy, T.H. Meng, Signal processing challenges for neural prostheses. IEEE Signal Process. Mag. 25, 18–28 (2008)

    Article  Google Scholar 

  52. C. Hansang, D. Corina, J.F. Brinkley, G.A. Ojemann, L.G. Shapiro, A new template matching method using variance estimation for spike sorting, in Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, NY, USA, 2005), pp. 225–228

    Google Scholar 

  53. W.F. Wong, E. Gogo, Fast hardware-based algorithms for elementary function computations using rectangular multipliers. IEEE Trans. Comp. 43(3), 278–294 (1994)

    Article  Google Scholar 

  54. J.C. Bajard, S. Kla, J.M. Muller, BKM: a new hardware algorithm for complex elementary functions. IEEE Trans. Comp. 43(8), 955–963 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  55. H. Bui, S. Tahar, Design and synthesis of an IEEE-754 exponential function, in IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1 (Institute of Electrical and Electronics Engineers, New York, NY, USA, 1999), pp. 450–455

    Google Scholar 

  56. G. Even, P.M. Seidel, A comparison of three rounding algorithms for IEEE floating-point multiplication. IEEE Trans. Comp. 49(7), 638–650 (2000)

    Article  Google Scholar 

  57. M.A. Figueiredo, C. Gloster, Implementation of a probabilistic neural network for multi-spectral image classification on an FPGA based custom computing machine, in Proceedings of the 5th Brazilian Symposium on Neural Networks (IEEE Computer Society Press, Washington, D.C., USA, 1998), pp. 174–179

    Google Scholar 

  58. V. Kantabutra, On hardware for computing exponential and trigonometric functions. IEEE Trans. Comp. 45(3), 328–339 (1996)

    Article  MATH  Google Scholar 

  59. B. Blodget, P. James-Roxby, E. Keller, S. McMillan, P. Sundararajan, A self-reconfiguring platform, in Proceedings of the 13th International Conference on Field Programmable Logic and Applications (FPL’03) (Springer, New York, NY, USA, 2003), pp. 565–574

    Google Scholar 

  60. W.X.Y. Li, R.H.M. Chan, W. Zhang, R.C.C. Cheung, D. Song, T.W. Berger, High-performance and scalable system architecture for the real-time estimation of generalized Laguerre–Volterra MIMO model from neural population spiking activity. IEEE J. Emerg. Sel. Top. Circ. Syst. 1(4), 489–501 (2011)

    Article  Google Scholar 

  61. T.E. Tkacik, A hardware random number generator, in Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (Springer, New York, NY, USA, 2002), pp. 450–453

    Google Scholar 

  62. M.C. Jeruchim, P. Balaban, K.S. Shanmugan, Simulation of Communication Systems: Modeling, Methodology, and Techniques (Springer, Berlin, 2000). ISBN 978-0-306-46267-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will X. Y. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, W.X.Y. et al. (2013). High-Performance Computing for Neuroinformatics Using FPGA. In: Vanderbauwhede, W., Benkrid, K. (eds) High-Performance Computing Using FPGAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1791-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1791-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1790-3

  • Online ISBN: 978-1-4614-1791-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics