Skip to main content

Progesterone Signaling to Chromatin in Breast Cancer Cells. Two Initial Cycles of Remodeling

  • Chapter
  • First Online:
Advances in Rapid Sex-Steroid Action

Abstract

Steroid hormones control gene activity by direct interaction of their intracellular receptors with hormone responsive elements on DNA but they can also crosstalk to kinase cascades activated by signals impinging on membrane receptors. Progesterone treatment of cells in culture leads to the rapid activation of several kinases and in particular the Src/Ras/Erk/Msk1 cascade, by activating a small population of membrane-anchored progesterone receptors (PR). One to five minutes after hormone treatment, activated Erk enters the nucleus and causes the recruitment of the activated ternary complex of pPR, pERK and pMSK1 to target chromatin, leading to phosphoacetylation of histone H3 and displacement of an HP1\( \tilde{\gamma} \) containing repressive complex. Thus, progestin activation of the Src/Ras/Erk/Msk1 cascade directly impacts chromatin. Within one minute of adding synthetic progesterone analogues to breast cancer cells, PR recruits to the target genes an ATP-dependent chromatin remodeling complex, NURF, a histone methyltransferase complex, ASCOM, which trimethylates histone H3 at lysine 4, and an activated Cyclin A/CDK2 complex, that phosphorylates histone H1 and facilitates its displacement. This first cycle of chromatin remodeling is a prerequisite for a second cycle starting 5 min after hormone addition, in which a different ATP-dependent chromatin remodeling complex, BAF, and a histone acetyltransferase, PCAF, cooperate to promote the displacement of core histones H2A and H2B, that facilitates access to the promoter of additional receptor complexes and other transcription factors necessary for gene induction. Thus, at both phases in activation of target promoters, a histone tail modification stabilizes the binding of an ATP-dependent chromatin remodeler to target promoters. These findings highlight the concept of transcription initiation as a process involving consecutive cycles of enzymatic chromatin remodeling, where each enzyme complex is necessary at a given time point and catalyzes a particular remodeling step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER (2007) A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 282:22278–22288

    Article  PubMed  CAS  Google Scholar 

  2. Espinosa JM, Emerson BM (2001) Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8:57–69

    Article  PubMed  CAS  Google Scholar 

  3. Lidor Nili E, Field Y, Lubling Y, Widom J, Oren M, Segal E (2010) p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res 20:1361–1368

    Article  PubMed  Google Scholar 

  4. Beato M, Herrlich P, SchĂ¼tz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857

    Article  PubMed  CAS  Google Scholar 

  5. Piña B, BrĂ¼ggemeier U, Beato M (1990) Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60:719–731

    Article  PubMed  Google Scholar 

  6. Di Croce L, Koop R, Venditti P, Westphal HM, Nightingale K, Becker P, Beato M (1999) Two-steps synegism between progesterone receptor and the DNA binding domain of NF1 on MMTVMMTV minichromosomes. Mol Cell 4:45–54

    Article  PubMed  CAS  Google Scholar 

  7. Vicent GP, Nacht AS, Smith CL, Peterson CL, Dimitrov S, Beato M (2004) DNA instructed displacement of H2A and H2B at an inducible promoter. Mol Cell 16:439–452

    Article  PubMed  CAS  Google Scholar 

  8. Vicent GP, Zaurin R, Nacht AS, Font-Mateu J, Le Dily F, Beato M (2010) Nuclear factor 1 synergizes with progesterone receptor on the mouse mammary tumor virus promoter wrapped around a histone H3/H4 tetramer by facilitating access to the central hormone-responsive elements. J Biol Chem 285:2622–2631

    Article  PubMed  CAS  Google Scholar 

  9. Koop R, Di Croce L, Beato M (2003) Histone H1 enhances synergistic activation of the MMTV promoter in chromatin. EMBO J 22:588–599

    Article  PubMed  CAS  Google Scholar 

  10. Vicent GP, MeliĂ¡ MJ, Beato M (2002) Asymmetric binding of histone H1 stabilizes MMTVMMTV nucleosomes and the interaction of progesterone receptor with the exposed HRE. J Mol Biol 324:501–517

    Article  PubMed  CAS  Google Scholar 

  11. Ballaré C, Uhrig M, Bechtold T, Sancho E, Di Domenico M, Migliaccio A, Auricchio F, Beato M (2003) Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Srcc-Src/Erk pathway in mammalian cells. Mol Cell Biol 23:1994–2008

    Article  PubMed  Google Scholar 

  12. Vicent GP, Ballaré C, Nacht AS, Clausell J, Subtil-Rodríguez A, Jordan A, Beato M (2006) Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 24:367–381

    Article  PubMed  CAS  Google Scholar 

  13. Eisfeld K, Candau R, Truss M, Beato M (1997) Binding of NF1 to the MMTV promoter in nucleosomes: Influence of rotational phasing, translational positioning and histone H1. Nucleic Acids Res 25:3733–3742

    Article  PubMed  CAS  Google Scholar 

  14. Vicent GP, Nacht AS, Font-Mateu J, Castellano G, Gaveglia L, Ballare C, Beato M (2011) Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev 25:845–862

    Article  PubMed  CAS  Google Scholar 

  15. Fan S, Wang J, Yuan R, Ma Y, Meng Q, Erdos MR, Pestell RG, Yuan F, Auborn KJ, Goldberg ID, Rosen EM (1999) BRCA1BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284:1354–1356

    Article  PubMed  CAS  Google Scholar 

  16. Ma Y, Katiyar P, Jones LP, Fan S, Zhang Y, Furth PA, Rosen EM (2006) The breast cancer susceptibility gene BRCA1BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol 20:14–34

    Article  PubMed  CAS  Google Scholar 

  17. Zheng L, Annab LA, Afshari CA, Lee WH, Boyer TG (2001) BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci U S A 98:9587–9592

    Article  PubMed  CAS  Google Scholar 

  18. Calvo V, Beato M (2011) BRCA1 Counteracts Progesterone Action by Ubiquitination Leading to Progesterone Receptor Degradation and Epigenetic Silencing of Target Promoters. Cancer Res 71:3422–3431

    Article  PubMed  CAS  Google Scholar 

  19. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  PubMed  CAS  Google Scholar 

  20. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  21. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The experimental work summarized in this review was supported by grants from the Departament d’InnovaciĂ³ Universitat i Empresa (DIUiE), Ministerio de EducaciĂ³n y Ciencia (MEC) BFU2010-15313 and BFU2006-10693, Consolider (CSD2006-00049), and EU IP HEROIC. G.P.V. is a recipient of a fellowship of the I3 Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Beato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vicent, G.P. et al. (2012). Progesterone Signaling to Chromatin in Breast Cancer Cells. Two Initial Cycles of Remodeling. In: Castoria, G., Migliaccio, A. (eds) Advances in Rapid Sex-Steroid Action. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1764-4_2

Download citation

Publish with us

Policies and ethics