Skip to main content

Nonself Perception in Plant Innate Immunity

  • Chapter
Self and Nonself

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 738))

Abstract

The ability to distinguish’ self’ from ‘nonself’ is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or nonhost resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an ‘altered-self’ recognition mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanabria NM, Goring D, Nürnberger T et al. Self/nonself perception and recognition mechanisms in plants: a comparison of self-incompatibility and innate immunity. New Phytol 2008; 178:503–514.

    PubMed  CAS  Google Scholar 

  2. Takayama S, Isogai A. Self-incompatibility in plants. Annu Rev Plant Biol 2005; 56:467–489.

    PubMed  CAS  Google Scholar 

  3. Wheeler MJ, Franklin-Tong VE. Specifying self-recognition: peptides lead the way. New Phytol 2007; 175:597–599.

    PubMed  CAS  Google Scholar 

  4. Zhang Y, Zhao Z, Xue Y. Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol 2009; 60:21–42.

    PubMed  CAS  Google Scholar 

  5. Nasrallah JB. Recognition and rejection of self in plant self-incompatibility: comparisons to animal histocompatibility. Trends Immunol 2005; 26:412–418.

    PubMed  CAS  Google Scholar 

  6. Nürnberger T, Lipka V. Non-host resistance in plants: new insights into an old phenomenon. Molec Plant Pathol 2005; 6:335–345.

    Google Scholar 

  7. Schwessinger B, Zipfel C. News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 2008; 11:389–395.

    PubMed  CAS  Google Scholar 

  8. Varnier AL, Sanchez L, Vatsa P et al. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant, Cell Environ 2009; 32:178–193.

    CAS  Google Scholar 

  9. Van Loon LC, Bakker PA, van der Heijdt WH et al. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Molec Plant Microbe Interact 2008; 21:1609–21.

    Google Scholar 

  10. Shan L, He P, Sheen J. Endless hide-and-seek: Dynamic co-evolution in plant-bacterium warfare. J Integr Plant Biol 2007; 49:105–111.

    CAS  Google Scholar 

  11. Nicaise V, Roux M, Zipfel C. Recent advances in PAMP-triggered immunity against bacteria: Pattern recognition receptors watch over and raise alarm. Plant Physiol 2009; 150:1638–1647.

    PubMed  CAS  Google Scholar 

  12. Kim MG, da Cunha L, McFall AJ et al. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defence in Arabidopsis. Cell 2005; 121:749–759.

    PubMed  CAS  Google Scholar 

  13. Abramovitch RB, Anderson JC, Martin GB. Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 2006; 7:601–11.

    PubMed  CAS  Google Scholar 

  14. Chisholm ST, Coaker G, Day B et al. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 2006; 124:803–814.

    PubMed  CAS  Google Scholar 

  15. He P, Shan L, Sheen J. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol 2007; 9:1385–1396.

    PubMed  CAS  Google Scholar 

  16. Jones JD, Dangl JL. The plant immune system. Nature 2006; 444:323–329.

    PubMed  CAS  Google Scholar 

  17. Ntoukakis V, Mucyn TS, Gimenez-Ibanez S et al. Host inhibition of a bacterial virulence effector triggers immunity to infection. Science 2009; 324:784–787.

    PubMed  CAS  Google Scholar 

  18. Boller T, He SH. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009; 324:742–744.

    PubMed  CAS  Google Scholar 

  19. Boller T, Felix G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 2009; 60:379–406.

    PubMed  CAS  Google Scholar 

  20. Fluhr R. Sentinels of disease: Plant resistance genes. Plant Physiol 2001; 127:1367–1374.

    PubMed  CAS  Google Scholar 

  21. Shiu S, Bleecker AB. Plant receptor-like kinase gene family: diversity, function and signaling. Science STKE 2001; 113:RE22.

    Google Scholar 

  22. Iriti M, Faoro F. Review of innate and specific immunity in plants and animals. Mycopathologia 2007; 164:57–64.

    PubMed  Google Scholar 

  23. Thordal-Christensen H. Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 2003; 6:351–357.

    PubMed  CAS  Google Scholar 

  24. Gust AA, Biswas R, Lenz HD et al. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 2007; 282:32338–32348.

    PubMed  CAS  Google Scholar 

  25. Matzinger P. The danger model: a renewed sense of self. Science 2002; 296:301–305.

    PubMed  CAS  Google Scholar 

  26. Jones DA, Takemoto D. Plant innate immunity—direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 2004; 16:48–62.

    PubMed  CAS  Google Scholar 

  27. Aslam SN, Erbs G, Morrissey KL et al. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences an perception or mobility and the host defence responses. Molec Plant Pathol 2009; 10:375–387.

    CAS  Google Scholar 

  28. Gómez-Gómez L, Boller T. FLS2:an LR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000; 5:1003–1011.

    PubMed  Google Scholar 

  29. Zipfel C, Kunze G, Chinchilla D et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 2006; 125:749–760.

    PubMed  CAS  Google Scholar 

  30. Gómez-Gómez L, Boller T. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 2002; 7:251–256.

    PubMed  Google Scholar 

  31. Shiu S-H, Karlowski WM, Pan R et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and Rice. Plant Cell 2004; 16:1220–1234.

    PubMed  CAS  Google Scholar 

  32. Ingle RA, Carstens M, Denby KJ. PAMP recognition and the plant-pathogen arms race. BioEssays 2006; 28:880–889.

    PubMed  CAS  Google Scholar 

  33. Umemoto N, Kakitani M, Iwamatsu A et al. The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc Natl Acad Sci USA 1997; 94:1029–1034.

    PubMed  CAS  Google Scholar 

  34. Ron M, Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 2004; 16:1604–1615.

    PubMed  CAS  Google Scholar 

  35. Kaku H, Nishizawa Y, Ishii-Minami N et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 2006; 103:11086–11091.

    PubMed  CAS  Google Scholar 

  36. Liu J, Liu X, Dai L et al. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J. Genet. Genomics 2007; 34:765–776.

    PubMed  Google Scholar 

  37. Tameling WIL, Takken FLW. Resistance proteins: scouts of the plant innate immune system. Eur J Plant Pathol 2008; 121:243–255.

    Google Scholar 

  38. Shan L, He P, Li J et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 2008; 4:17–27.

    PubMed  CAS  Google Scholar 

  39. Shen Q-H, Schulze-Lefert P. Rumble in the nuclear jungle: compartmentalization, trafficking and nuclear action of plant immune receptors. EMBO J 2007; 26:4293–4301.

    PubMed  CAS  Google Scholar 

  40. Mishina TE, Zeier J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 2007; 50:500–513.

    PubMed  CAS  Google Scholar 

  41. Naito K, Taguchi F, Suzuki T et al. Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Mol Plant Microbe Interact 2008; 21:1165–1174.

    PubMed  CAS  Google Scholar 

  42. Halim VA, Altmann S, Ellinger D et al. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J 2009; 57:230–242.

    PubMed  CAS  Google Scholar 

  43. Tsuda K, Sato M, Glazebrook J et al. Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 2008; 53:763–775.

    PubMed  CAS  Google Scholar 

  44. Humphrey TV, Bonetta DT, Goring DR. Sentinels at the wall: cell wall receptors and sensors. New Phytologist 2007; 176:7–21.

    PubMed  CAS  Google Scholar 

  45. De Lorenzo G, D’Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPS) in defense against pathogenic fungi. Annu Rev Phytopathol 2001; 39:313–335.

    PubMed  Google Scholar 

  46. Cote F, Hahn MG. Oligosaccharins-structures and signal-transduction. Plant Mol Biol 1994; 26: 1379–1411.

    PubMed  CAS  Google Scholar 

  47. Mattei B, Galletti R, Manfredini C et al. Recognition and signaling in the cell wall: The case of endopolygalacturonase, PGIP and oligogalacturonides. Plant Biosystems 2005; 139:24–27.

    Google Scholar 

  48. Chassot C, Nawrath C, Métraux J-P. Cuticular defects lead to full immunity to a major plant pathogen. Plant J 2007; 49:972–980.

    PubMed  CAS  Google Scholar 

  49. Caño-Delgado A, Penfield S, Smith C et al. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 2003; 34:351–362.

    PubMed  Google Scholar 

  50. Chen Z, Hong X, Zhang H et al. Disruption of the cellulose synthase gene, AtCesA8/IRX1 enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 2005; 43:273–283.

    PubMed  CAS  Google Scholar 

  51. Hernandez-Blanco C, Feng DX, Hu J et al. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 2007; 19:890–903.

    PubMed  CAS  Google Scholar 

  52. Nickle TC, Meinke DW. A cytokinesis-defective mutant of Arabidopsis (cyt1) characterized by embryonic lethality, incomplete cell walls and excessive callose accumulation. Plant J 1998; 15:321–32.

    PubMed  CAS  Google Scholar 

  53. Ellis C, Karafyllidis I, Wasternack C et al. The Arabidopsis mutant cev 1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 2002; 14:1557–1566.

    PubMed  CAS  Google Scholar 

  54. Creelman RA, Tierney ML, Mullet JE. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 1992; 89:4938–4941.

    PubMed  CAS  Google Scholar 

  55. Creelman RA, Mullet JE. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 1995; 92:4114–4119.

    PubMed  CAS  Google Scholar 

  56. Penninckx IA, Thomma BP, Buchala A et al. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 1998; 10:2103–2113.

    PubMed  CAS  Google Scholar 

  57. Borner GHH, Sherrier DJ, Stevens TJ et al. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiol 2002; 129:486–499.

    PubMed  CAS  Google Scholar 

  58. Anderson CM, Wagner TA, Perret M et al. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Molec Biol 2001; 47:197–206.

    CAS  Google Scholar 

  59. Decreux A, Messiaen. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 2005; 46:268–278.

    PubMed  CAS  Google Scholar 

  60. Silva NF, Goring DR. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol Biol 2002; 50:667–685.

    PubMed  CAS  Google Scholar 

  61. Altenbach D, Robatzek S. Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol Plant Micr Interact 2007; 20:1031–1039.

    CAS  Google Scholar 

  62. Shirasu K. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 2009; 60:139–164.

    PubMed  CAS  Google Scholar 

  63. Shiu S, Bleecker AB. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 2003; 132:530–543.

    PubMed  CAS  Google Scholar 

  64. Fritz-Laylin LK, Krishnamurthy N, Tör M et al. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 2005; 138:611–623.

    PubMed  CAS  Google Scholar 

  65. Zipfel C, Robatzek S, Navarro L et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 2004; 428:764–767.

    PubMed  CAS  Google Scholar 

  66. Chinchilla D, Bauer Z, Regenass M et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 2006; 18:465–476.

    PubMed  CAS  Google Scholar 

  67. Becraft PW. Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 2002; 18:163–192.

    PubMed  CAS  Google Scholar 

  68. Afzal AJ, Wood AJ, Lightfoot DA. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Micr Interact 2008; 21:507–17.

    CAS  Google Scholar 

  69. Shiu S, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 2001; 98:10763–10768.

    PubMed  CAS  Google Scholar 

  70. Dardick C, Ronald P. Plant and animal pathogen recognition receptors signal through nonRD kinases. PLoS Pathogens 2006; 2:14–28.

    CAS  Google Scholar 

  71. Walker JC. Structure and function of the receptor-like kinases of higher plants. Plant Mol Biol 1994; 26:1599–1609.

    PubMed  CAS  Google Scholar 

  72. Nasrallah JB, Yu S, Nasrallah ME. Self-incompatibility genes of Brassica oleracea: Expression, isolation and structure. Proc Natl Acad Sci USA 1988; 85:5551–5555.

    PubMed  CAS  Google Scholar 

  73. Torii KU, Clark SE. Receptor-like kinases in plant development. Adv Bot Res 2000; 32:225–267.

    CAS  Google Scholar 

  74. Takemoto D, Hayashi M, Doke N et al. Isolation for the gene for EILP, an elicitor-inducible LR receptor-like protein from tobacco by differential display. Plant Cell Physiol 2000; 41:458–464.

    PubMed  CAS  Google Scholar 

  75. Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 1995; 374:183–186.

    PubMed  CAS  Google Scholar 

  76. Wagner TA, Kohorn BD. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 2001; 13:303–318.

    PubMed  CAS  Google Scholar 

  77. Loetscher H, Pan YE, Lahm H et al. Molecular cloning and expression of the human 55 kD tumor necrosis factor receptor. Cell 1990; 61:351–359.

    PubMed  CAS  Google Scholar 

  78. Wang X, Zafian P, Choudhary M et al. The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defence proteins. Proc Natl Acad Sci USA 1996; 93:2598–2602.

    PubMed  CAS  Google Scholar 

  79. Kim YS, Lee JH, Yoon GM et al. CHRK1, a chitinase-related receptor-like kinase in tobacco. Plant Physiol 2000; 123:905–915.

    PubMed  CAS  Google Scholar 

  80. Chen Z. A superfamily of proteins with novel cysteine-rich repeats. Plant Physiol 2001; 126:473–476.

    PubMed  CAS  Google Scholar 

  81. Goff KE, Ramonell KM. The role and regulation of receptor-like kinases in plant defense. Gene Regulation and Systems Biology 2007; 1:167–175.

    PubMed  Google Scholar 

  82. Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 2003; 54:23–61.

    PubMed  CAS  Google Scholar 

  83. Nürnberger T, Kemmerling B. Receptor protein kinases—pattern recognition receptors in plant immunity. Trends Plant Sci 2006; 11:519–522.

    PubMed  Google Scholar 

  84. Bent AF, Mackey D. Elicitors, effectors and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 2007; 45:399–436.

    PubMed  CAS  Google Scholar 

  85. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature 2001; 411:826–833.

    PubMed  CAS  Google Scholar 

  86. Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 2008; 20:10–16.

    PubMed  CAS  Google Scholar 

  87. Van der Hoorn RAL, Kamoun S. From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 2008; 20:2009–2017.

    PubMed  Google Scholar 

  88. Van der Biezen EA, Jones JDG. The NB-ARC domain; a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 1998; 8:R226–R228.

    PubMed  Google Scholar 

  89. Leipe DD, Koonin EV, Aravind 1. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain archotechtures, unusual phyletic patterns and evolution by horizontal gene transfer. J Mol Biol 2004; 343:1–28.

    PubMed  CAS  Google Scholar 

  90. Takken FLW, Albrecht M, Tameling WIL. Resistance proteins: molecular switches of plant defense. Curr Opin Plant Biol 2006; 9:383–390.

    PubMed  CAS  Google Scholar 

  91. Takken FLW, Tameling WIL. To nibble at plant resistance proteins. Science 2009; 324:744–746.

    PubMed  CAS  Google Scholar 

  92. Marathe R, Dinesh-Kumar S. Plant defense: One post, multiple guards? Mol Cell 2003; 11:284–286.

    PubMed  CAS  Google Scholar 

  93. Meyers BC, Kozik A, Griego A et al. Genome-wide analysis of NBS-LR-encoding genes in Arabidopsis. Plant Cell 2003; 15:809–834.

    PubMed  CAS  Google Scholar 

  94. Shen Q-H, Saijo Y, Mauch S et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 2007; 315:1098–1103.

    PubMed  CAS  Google Scholar 

  95. Du L, Chen Z. Identification of genes encoding receptor-like protein kinases as possible targets of pathogenand salicyclic acid induced WRKY DNA-binding proteins in Arabidopsis. Plant J 2000; 24:837–847.

    PubMed  CAS  Google Scholar 

  96. Ulker B, Somssich IE. WRKY trancription factors: from DNA binding towards biological function. Curr Opin Plant Biol 2004; 7:491–498.

    PubMed  Google Scholar 

  97. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197–216.

    PubMed  CAS  Google Scholar 

  98. Zipfel C, Felix G. Plants and animals: a different taste for microbes? Curr Opin Plant Biol 2005; 8:353–360.

    PubMed  CAS  Google Scholar 

  99. Navarro L, Zipfel C, Rowland O et al. The transcriptional innate immune response to flg22; interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 2004; 135:113–128.

    Google Scholar 

  100. Ohtake Y, Takahashi T, Komeda Y. Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana. Plant Cell Physiol 2000; 41:1038–1044.

    PubMed  CAS  Google Scholar 

  101. Wang H, Chevalier D, Larue C et al. The protein phosphatases and protein kinases of Arabidopsis thaliana. In: Somerville CR, Meyerowitz EM, (eds). The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, 2007, doi: 10.1199/tab.0106 (http://www.aspb.org/publications/arabidopsis/).

    Google Scholar 

  102. Sanabria NM, Dubery IA. Differential display profiling of the Nicotiana response to LPS reveals elements of plant basal resistance. Biochem Biophys Res Commun 2006; 344:1001–1007.

    PubMed  CAS  Google Scholar 

  103. Ausubel F. Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 2005; 6:973–979.

    PubMed  CAS  Google Scholar 

  104. Zhang X. Leucine-rich repeat receptor-like kinases in plants. Plant Mol Biol Rep 1998; 16:301–311.

    CAS  Google Scholar 

  105. Chinchilla D, Zipfel C, Robatzek S et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature 2007; 448:497–501.

    PubMed  CAS  Google Scholar 

  106. Kemmerling B, Schwedt A, Rodriguez P et al. A brassinolide-independent role for the BRI1 associated receptor kinase 1 (BAK1) in plant cell death control. Curr Biol 2007; 17:1116–1122.

    PubMed  CAS  Google Scholar 

  107. Scheer JM, Ryan CA. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LR receptor kinase family. Proc Natl Acad Sci USA 2002; 99:9585–9590.

    PubMed  CAS  Google Scholar 

  108. Meng X, Bonasera JM, Kim JF et al. Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Molec Plant Micr Interact 2006; 19:53–61.

    CAS  Google Scholar 

  109. Torii KU, Mitsukawa N, Oosumi T et al. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular Leucine-rich repeats. Plant Cell 1996; 8:735–746.

    PubMed  CAS  Google Scholar 

  110. Nishimura R, Hayashi M, Wu GJ et al. HAR1 mediates systemic regulation of symbiotic organ development. Nature 2002; 420:426–429.

    PubMed  CAS  Google Scholar 

  111. Komjanc M, Festi S, Rizzotti L et al. A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol 1999; 40:945–957.

    PubMed  CAS  Google Scholar 

  112. Endre G, Kereszt A, Kevei Z et al. A receptor kinase gene regulating symbiotic nodule development. Nature 2002; 417:962–966.

    PubMed  CAS  Google Scholar 

  113. Ryan CA, Huffaker A, Yamaguchi Y. New insights into innate immunity in Arabidopsis. Cell Microbiol 2007; 9:1902–1908.

    PubMed  CAS  Google Scholar 

  114. Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 2002; 16:1139–1149.

    PubMed  CAS  Google Scholar 

  115. Montoya T, Nomura T, Farrar K et al. Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 2002; 14:3163–3176.

    PubMed  CAS  Google Scholar 

  116. Stracke S, Kistner C, Yoshida S et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 2002; 417:959–962.

    PubMed  CAS  Google Scholar 

  117. Song WY, Wang GL, Chen LL et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995; 270:1804–1806.

    PubMed  CAS  Google Scholar 

  118. Sun X, Cao Y, Yang Z et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LR receptor kinase-like protein. Plant J 2004; 37:517–527.

    PubMed  CAS  Google Scholar 

  119. Czernic P, Visser B, Sun W et al. Characterisation of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. Plant J 1999; 18:321–327.

    PubMed  CAS  Google Scholar 

  120. Miya A, Albert P, Shinya T et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 2007; 104:19613–19618.

    PubMed  CAS  Google Scholar 

  121. Riou C, Hervé C, Pacquit V et al. Expression of an Arabidopsis lectin kinase receptor gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids. Plant Physiol Biochem 2002; 40:431–438.

    CAS  Google Scholar 

  122. Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 1997; 11:45–52.

    PubMed  CAS  Google Scholar 

  123. Feuillet C, Reuzeau C, Kjellbom P et al. Molecular characterization of a new type of receptor-like kinase (wlrk) gene family in wheat. Plant Mol Biol 1998; 37:943–953.

    PubMed  CAS  Google Scholar 

  124. Limpens E, Franken C, Smit P et al. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 2003; 302:630–633.

    PubMed  CAS  Google Scholar 

  125. Wan JW, Zhang X, Neecer D et al. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 2008; 20:471–481.

    PubMed  CAS  Google Scholar 

  126. Searle IR, Men AE, Laniya TS et al. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 2003; 299:109–112.

    PubMed  CAS  Google Scholar 

  127. Radutoiu S, Madsen LH, Madsen EB et al. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 2003; 425:585–592.

    PubMed  CAS  Google Scholar 

  128. Madsen EB, Madsen LH, Radutoiu S et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 2003; 425:637–640.

    PubMed  CAS  Google Scholar 

  129. Swiderski MR, Innes RW. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 2001; 26:101–112.

    PubMed  CAS  Google Scholar 

  130. Chen X, Shang J, Chen D et al. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 2006; 46:794–804.

    PubMed  CAS  Google Scholar 

  131. Nishiguchi M, Yoshida Y, Sumizono T et al. A receptor-like protein kinase with a lectin-like domain from Lombardy poplar: gene expression in response to wounding and characterization of phosphorylation activity. Mol Genet Genom 2002; 267:506–514.

    CAS  Google Scholar 

  132. Lange J, Xie ZP, Broughton WJ et al. A gene encoding a receptor-like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors. Plant Sci 1999; 142:133–145.

    CAS  Google Scholar 

  133. Diener AC, Ausubel FM. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 2005; 171:305–321.

    PubMed  CAS  Google Scholar 

  134. Walker JC. Receptor-like protein kinase genes of Arabidopsis thaliana. Plant J 1993; 3:451–456.

    PubMed  CAS  Google Scholar 

  135. Coello P, Sassen A, Haywood V et al. Biochemical characterisation and expression of RLK4, a receptor-like kinase from Arabidopsis thaliana. Plant Sci 1999; 142:83–91.

    CAS  Google Scholar 

  136. Pastuglia M, Roby D, Dumas C et al. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 1997; 9:49–60.

    PubMed  CAS  Google Scholar 

  137. Kohorn BD, Lane S, Smith TA. An Arabidopsis serine/threonine kinase homologue with an epidermal growth factor repeat selected in yeast for its specificity for a thylakoid membrane protein. Proc Natl Acad Sci USA 1992; 89:10989–10992.

    PubMed  CAS  Google Scholar 

  138. He Z-H, Fujiki M, Kohorn BD. A cell-wall associated receptor-like protein kinase. J Biol Chem 1996; 271:19789–19793.

    PubMed  CAS  Google Scholar 

  139. He Z-H, He D, Kohorn BD. Requirements for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J 1998; 14:55–63.

    PubMed  CAS  Google Scholar 

  140. He Z-H, Cheeseman I, He D et al. A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 1999; 39:1189–1196.

    PubMed  CAS  Google Scholar 

  141. Dickinson M. Resistance genes. In: Molecular plant pathology. New York: BIOS Scientific Publishers, 2003:160–173.

    Google Scholar 

  142. Shpak ED, Lakeman MB, Torii KU. Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell 2003; 15:1095–1110.

    PubMed  CAS  Google Scholar 

  143. Godiard L, Sauviac L, Torii KU et al. ERECTA, an LR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J 2003; 36:353–365.

    PubMed  CAS  Google Scholar 

  144. Buhot N, Gomes E, Milat ML et al. Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol Biol Cell 2004; 15:5047–5052.

    PubMed  CAS  Google Scholar 

  145. Knogge W, Scheel D. LysM receptor recognize friend and foe. Proc Natl Acad Sci USA 2006; 103:10829–10830.

    PubMed  CAS  Google Scholar 

  146. Nakhamchik A, Zhao Z, Provart NJ et al. A comprehensive expression analysis of the Arabidopsis proline-rich extensin-like receptor kinase family using bioinformatic and experimental approaches. Plant Cell Physiol 2004; 45:1875–1881.

    PubMed  CAS  Google Scholar 

  147. Haffani YZ, Silva NF, Sewter SK et al. Altered expression of PERK receptor kinases in Arabidopsis leads to changes in growth and floral organ formation. Plant Signal Behaviour 2006; 1:251–260.

    Google Scholar 

  148. Block A, Li G, Fu ZQ et al. Phytopathogen type III effector weaponry and their plant targets. Curr Opin Plant Biol 2008; 11:396–403.

    PubMed  CAS  Google Scholar 

  149. Tör M, Lotze MT, Holton N. Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot 2009; 60:3645–3654.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Dubery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Dubery, I.A., Sanabria, N.M., Huang, JC. (2012). Nonself Perception in Plant Innate Immunity. In: López-Larrea, C. (eds) Self and Nonself. Advances in Experimental Medicine and Biology, vol 738. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1680-7_6

Download citation

Publish with us

Policies and ethics