Skip to main content

Genes and Genomes: Structure

  • Reference work entry
  • First Online:
Molecular Life Sciences
  • 78 Accesses

Synopsis

The ability of living cells to continue depends on their ability to divide and produce either exact copies of themselves or programmed variations; they thus require a repository of knowledge for doing so. This repository is their genes, composed in cells of DNA and in aggregate referred to as their genome. The mechanism by which this DNA is duplicated is treated in Section I, DNA Replication. Here the concern is with its organization and function. These facets, organization and function, differ among the different repository levels (nuclei, organelles – mitochondria and chloroplasts – plasmids, and viruses) and are dealt with individually in each appropriate section. Major differences include the number of chromosomes (multiple chromosomes in eukaryotic nuclei, single chromosomes typically in organelles, plasmids, and DNA viruses), the number of genome copies (two in nuclei, hundreds to thousands in mitochondria and chloroplasts, various numbers >2 for plasmids and viruses),...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 729.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Yougng IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckwith J (2011) The operon as paradigm: normal science and the beginning of biological complexity. J Mol Biol 409:7–13

    Article  CAS  PubMed  Google Scholar 

  • Chargaff E, Zamenhof S, Green C (1950) Composition of human deoxypentose nucleic acid. Nature 165:756–757

    Article  CAS  Google Scholar 

  • Corneo G, Moore C, Sanadi DR, Grossman LI, Marmur J (1966) Mitochondrial DNA in yeast and some mammalian species. Science 151:687–689

    Article  CAS  PubMed  Google Scholar 

  • Crick FH, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Nature 192:1227–1232

    Article  CAS  PubMed  Google Scholar 

  • De S, Kumari J, Mudgal R, Modi P, Gupta S, Futami K, Goto H, Lindor NM, Furuichi Y, Mohanty D, Sengupta S (2012) Recql4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 125:2509–2522

    Article  CAS  PubMed  Google Scholar 

  • Dulbecco R, Vogt M (1963) Evidence for a ring structure of polyoma virus DNA. Proc Natl Acad Sci U S A 50:236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hygiene 27:113–159

    Article  CAS  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH (1962) Relations between mutations and base sequences in the amino acid code. Proc Natl Acad Sci U S A 48:1809–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58

    Article  CAS  PubMed  Google Scholar 

  • Leigh-Brown S, Enriquez JA, Odom DT (2010) Nuclear transcription factors in mammalian mitochondria. Genome Biol 11:215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nass MM, Nass S (1963) Intramitochondrial fibers with DNA characteristics. I Fixation and electron staining reactions. J Cell Biol 19:593–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayre A (1975) Rosalind Franklin and DNA. Norton, New York

    Google Scholar 

  • Schatz G, Haslbrunner E, Tuppy H (1964) Deoxyribonucleic acid associated with yeast mitochondria. Biochem Biophys Res Commun 15:127–132

    Article  CAS  PubMed  Google Scholar 

  • Sharpley MS, Marciniak C, Eckel-Mahan K, Mcmanus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, Macgregor G, Sassone-Corsi P, Wallace DC (2012) Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bruggen EF, Borst P, Ruttenberg GJ, Gruber M, Kroon AM (1966) Circular mitochondrial DNA. Biochim Biophys Acta 119:437–439

    Article  PubMed  Google Scholar 

  • Wallace DC (2005) The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene 354:169–180

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Watson JD (1969) Double helix. Athenium, New York

    Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Weil R, Vinograd J (1963) The cyclic helix and cyclic coil forms of polyoma viral DNA. Proc Natl Acad Sci U S A 50:730–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence I. Grossman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grossman, L.I. (2018). Genes and Genomes: Structure. In: Wells, R.D., Bond, J.S., Klinman, J., Masters, B.S.S. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1531-2_99

Download citation

Publish with us

Policies and ethics