Skip to main content

In Vivo Pharmacodynamic Modeling for Drug Discovery

  • Chapter
  • First Online:
Antibiotic Discovery and Development

Abstract

The use of animal infections models to assess antimicrobial efficacy is hardly a novel science. This practice dates back many decades, and, as might be expected, an exorbitant number of infection models in many different species have been employed over that time. Some of the more popular infection models include the following: thigh infection, lung infection, meningitis, sepsis, and urinary tract infection. Entire textbooks have been devoted to describing these models methodologically, and to do so again is not within the scope of this chapter. The purpose of this chapter, however, is to discuss some of the important concepts involved in developing any one of these models of infection to create meaningful data that can then be used to better characterize antimicrobials pharmacodynamically and ultimately to understand how these findings can translate to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zuluaga AF, Salazar BE, Rodriguez CA, Zapata AX et al (2006) Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infect Dis 6:55

    Article  PubMed  Google Scholar 

  2. Dennis CG, Greco WR, Brun Y, Youn R et al (2006) Effect of amphotericin B and micafungin combination on survival, histopathology, and fungal burden in experimental aspergillosis in the p47phox−/− mouse model of chronic granulomatous disease. Antimicrob Agents Chemother 50:422–427

    Article  PubMed  CAS  Google Scholar 

  3. Reyes N, Skinner R, Kaniga K, Krause KM et al (2005) Efficacy of telavancin (TD-6424), a rapidly bactericidal lipoglycopeptide with multiple mechanisms of action, in a murine model of pneumonia induced by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:4344–4346

    Article  PubMed  CAS  Google Scholar 

  4. Koomanachai P, Crandon JL, Banevicius MA, Peng L et al (2009) Pharmacodynamic profile of Tigecycline against methicillin-resistant staphylococcus aureus in an experimental pneumonia model. Antimicrob Agents Chemother 53(12):5060–5063

    Article  PubMed  CAS  Google Scholar 

  5. Laohavaleeson S, Tessier PR, Nicolau DP (2008) Pharmacodynamic characterization of ceftobiprole in experimental pneumonia caused by phenotypically diverse Staphylococcus aureus strains. Antimicrob Agents Chemother 52:2389–2394

    Article  PubMed  CAS  Google Scholar 

  6. Soriano F, Coronel P, Gimeno M, Jimenez M et al (1996) Inoculum effect and bactericidal activity of cefditoren and other antibiotics against Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis. Eur J Clin Microbiol Infect Dis 15:761–763

    Article  PubMed  CAS  Google Scholar 

  7. Maglio D, Ong C, Banevicius MA, Geng Q et al (2004) Determination of the in vivo pharmacodynamic profile of cefepime against extended-spectrum-beta-lactamase-producing Escher­ichia coli at various inocula. Antimicrob Agents Chemother 48:1941–1947

    Article  PubMed  CAS  Google Scholar 

  8. Craig WA, Bhavnani SM, Ambrose PG (2004) The inoculum effect: fact or artifact? Diagn Microbiol Infect Dis 50:229–230

    Article  PubMed  Google Scholar 

  9. Burgess DS, Hall RG 2nd (2004) In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-ESBL producing Klebsiella pneumoniae. Diagn Microbiol Infect Dis 49:41–46

    Article  PubMed  CAS  Google Scholar 

  10. Queenan AM, Foleno B, Gownley C, Wira E et al (2004) Effects of inoculum and beta-lactamase activity in AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J Clin Microbiol 42:269–275

    Article  PubMed  CAS  Google Scholar 

  11. Ferran AA, Kesteman AS, Toutain PL, Bousquet-Melou A (2009) Pharmacokinetic/pharmacodynamic analysis of the influence of inoculum size on the selection of resistance in Escherichia coli by a quinolone in a mouse thigh bacterial infection model. Antimicrob Agents Chemother 53:3384–3390

    Article  PubMed  CAS  Google Scholar 

  12. Morrissey I, George JT (1999) The effect of the inoculum size on bactericidal activity. J Antimicrob Chemother 43:423–425

    Article  PubMed  CAS  Google Scholar 

  13. Kumar A, Haery C, Paladugu B, Kumar A et al (2006) The duration of hypotension before the initiation of antibiotic treatment is a critical determinant of survival in a murine model of Escherichia coli septic shock: association with serum lactate and inflammatory cytokine levels. J Infect Dis 193:251–258

    Article  PubMed  CAS  Google Scholar 

  14. Hegde SS, Reyes N, Skinner R, Difuntorum S (2008) Efficacy of telavancin in a murine model of pneumonia induced by methicillin-susceptible Staphylococcus aureus. J Antimicrob Chemother 61:169–172

    Article  PubMed  CAS  Google Scholar 

  15. Koomanachai P, Kim A, Nicolau DP (2009) Pharmacodynamic evaluation of tigecycline against Acinetobacter baumannii in a murine pneumonia model. J Antimicrob Chemother 63: 982–987

    Article  PubMed  CAS  Google Scholar 

  16. Fonseca-Aten M, Salvatore CM, Mejias A et al (2005) Evaluation of LBM415 (NVP PDF-713), a novel peptide deformylase inhibitor, for treatment of experimental Mycoplasma pneumoniae pneumonia. Antimicrob Agents Chemother 49:4128–4136

    Article  PubMed  CAS  Google Scholar 

  17. Salvatore CM, Techasaensiri C, Tagliabue C, Katz K et al (2009) Tigecycline therapy significantly reduces the concentrations of inflammatory pulmonary cytokines and chemokines in a murine model of Mycoplasma pneumoniae pneumonia. Antimicrob Agents Chemother 53: 1546–1551

    Article  PubMed  CAS  Google Scholar 

  18. Nicasio AM, Crandon JL, Nicolau DP (2009) In vivo pharmacodynamic profile of tigecycline against phenotypically diverse Escherichia coli and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother 53:2756–2761

    Article  PubMed  CAS  Google Scholar 

  19. Passarell JA, Meagher AK, Liolios K, Cirincione BB et al (2008) Exposure-response analyses of tigecycline efficacy in patients with complicated intra-abdominal infections. Antimicrob Agents Chemother 52:204–210

    Article  PubMed  CAS  Google Scholar 

  20. Crandon JL, Kim A, Nicolau DP (2009) Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs. J Antimicrob Chemother 64: 837–839

    Article  PubMed  CAS  Google Scholar 

  21. Hooker A, Vicini P (2005) Simultaneous population optimal design for pharmacokinetic-pharmacodynamic experiments. AAPS J 7:E759–E785

    Article  PubMed  CAS  Google Scholar 

  22. Beer J, Wagner CC, Zeitlinger M (2009) Protein binding of antimicrobials: methods for quantification and for investigation of its impact on bacterial killing. AAPS J 11:1–12

    Article  PubMed  CAS  Google Scholar 

  23. Merrikin DJ, Briant J, Rolinson GN (1983) Effect of protein binding on antibiotic activity in vivo. J Antimicrob Chemother 11:233–238

    Article  PubMed  CAS  Google Scholar 

  24. Mattoes HM, Banevicius M, Li D, Turley C et al (2001) Pharmacodynamic assessment of gatifloxacin against Streptococcus pneumoniae. Antimicrob Agents Chemother 45:2092–2097

    Article  PubMed  CAS  Google Scholar 

  25. Nicolau DP, Mattoes HM, Banevicius M, Xuan D et al (2003) Pharmacodynamics of a novel des-F(6)-quinolone, BMS-284756, against Streptococcus pneumoniae in the thigh infection model. Antimicrob Agents Chemother 47:1630–1635

    Article  PubMed  CAS  Google Scholar 

  26. DeRyke CA, Banevicius MA, Fan HW, Nicolau DP (2007) Bactericidal activities of meropenem and ertapenem against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a neutropenic mouse thigh model. Antimicrob Agents Chemother 51:1481–1486

    Article  PubMed  CAS  Google Scholar 

  27. Kim A, Banevicius MA, Nicolau DP (2008) In vivo pharmacodynamic profiling of doripenem against Pseudomonas aeruginosa by simulating human exposures. Antimicrob Agents Chemother 52:2497–2502

    Article  PubMed  CAS  Google Scholar 

  28. LaPlante KL, Leonard SN, Andes DR, Craig WA et al (2008) Activities of clindamycin, daptomycin, doxycycline, linezolid, trimethoprim-sulfamethoxazole, and vancomycin against community-associated methicillin-resistant Staphylococcus aureus with inducible clindamycin resistance in murine thigh infection and in vitro pharmacodynamic models. Antimicrob Agents Chemother 52:2156–2162

    Article  PubMed  CAS  Google Scholar 

  29. Scaglione F, Mouton JW, Mattina R, Fraschini F (2003) Pharmacodynamics of levofloxacin and ciprofloxacin in a murine pneumonia model: peak concentration/MIC versus area under the curve/MIC ratios. Antimicrob Agents Chemother 47:2749–2755

    Article  PubMed  CAS  Google Scholar 

  30. Schlossberg D (1995) Azithromycin and clarithromycin. Med Clin North Am 79:803–815

    PubMed  CAS  Google Scholar 

  31. Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265

    Article  PubMed  CAS  Google Scholar 

  32. Crandon JL, Banevicius MA, Nicolau DP (2009) Pharmacodynamics of tigecycline against phenotypically diverse Staphylococcus aureus isolates in a murine thigh model. Antimicrob Agents Chemother 53:1165–1169

    Article  PubMed  CAS  Google Scholar 

  33. Crandon JL, Bulik CC, Nicolau DP (2009) In vivo efficacy of 1- and 2-gram human simulated prolonged infusions of doripenem against Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:4352–4356

    PubMed  CAS  Google Scholar 

  34. Andes D, Craig WA (1998) In vivo activities of amoxicillin and amoxicillin-clavulanate against Streptococcus pneumoniae: application to breakpoint determinations. Antimicrob Agents Chemother 42:2375–2379

    PubMed  CAS  Google Scholar 

  35. Drusano GL, Preston SL, Hardalo C, Hare R et al (2001) Use of preclinical data for selection of a phase II/III dose for evernimicin and identification of a preclinical MIC breakpoint. Antimicrob Agents Chemother 45:13–22

    Article  PubMed  CAS  Google Scholar 

  36. Dandekar PK, Williams P, Tessier PR, Farrell DJ et al (2005) Assessment of the efficacy of telithromycin simulating human exposures against S. pneumoniae with ribosomal mutations in a murine pneumonia model. Int J Antimicrob Agents 25:530–534

    Article  PubMed  CAS  Google Scholar 

  37. Reyes N, Skinner R, Benton BM, Krause KM et al (2006) Efficacy of telavancin in a murine model of bacteraemia induced by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 58:462–465

    Article  PubMed  CAS  Google Scholar 

  38. Espie P, Tytgat D, Sargentini-Maier ML, Poggesi I et al (2009) Physiologically based pharmacokinetics (PBPK). Drug Metab Rev 41:391–407

    Article  PubMed  CAS  Google Scholar 

  39. Mugford CA, Mortillo M, Mico BA, Tarloff JB (1992) 1-Aminobenzotriazole-induced destruction of hepatic and renal cytochromes P450 in male Sprague-Dawley rats. Fundam Appl Toxicol 19:43–49

    Article  PubMed  CAS  Google Scholar 

  40. DeRyke CA, Nicolau DP (2007) Is all free time above the minimum inhibitory concentration the same: implications for beta-lactam in vivo modeling. Int J Antimicrob Agents 29: 341–343

    Article  PubMed  CAS  Google Scholar 

  41. Nicolau DP (1998) Optimizing antimicrobial therapy and emerging pathogens. Am J Manag Care 4:S525–S530

    Google Scholar 

  42. Ibrahim EH, Sherman G, Ward S, Fraser VJ et al (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118:146–155

    Article  PubMed  CAS  Google Scholar 

  43. Kollef MH, Ward S (1998) The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 113:412–420

    Article  PubMed  CAS  Google Scholar 

  44. Luna CM, Vujacich P, Niederman MS, Vay C et al (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111:676–685

    Article  PubMed  CAS  Google Scholar 

  45. Rello J, Gallego M, Mariscal D, Sonora R et al (1997) The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 156:196–200

    PubMed  CAS  Google Scholar 

  46. DeRyke CA, Kuti JL, Nicolau DP (2007) Reevaluation of current susceptibility breakpoints for Gram-negative rods based on pharmacodynamic assessment. Diagn Microbiol Infect Dis 58:337–344

    Article  PubMed  CAS  Google Scholar 

  47. Kuti JL, Nightingale CH, Nicolau DP (2004) Optimizing pharmacodynamic target attainment using the MYSTIC antibiogram: data collected in North America in 2002. Antimicrob Agents Chemother 48:2464–2470

    Article  PubMed  CAS  Google Scholar 

  48. Tam VH, Gamez EA, Weston JS, Gerard LN et al (2008) Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 46:862–867

    Article  PubMed  Google Scholar 

  49. Sakoulas G, Moise-Broder PA, Schentag J, Forrest A et al (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42:2398–2402

    Article  PubMed  CAS  Google Scholar 

  50. Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2:289–300

    Article  PubMed  CAS  Google Scholar 

  51. Turnidge JD (1998) The pharmacodynamics of beta-lactams. Clin Infect Dis 27:10–22

    Article  PubMed  CAS  Google Scholar 

  52. Nicolau D, Quintiliani R, Nightingale CH (1992) Once-daily aminoglycosides. Conn Med 56:561–563

    PubMed  CAS  Google Scholar 

  53. Holford NH, Sheiner LB (1981) Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet 6:429–453

    Article  PubMed  CAS  Google Scholar 

  54. Leggett JE, Fantin B, Ebert S, Totsuka K et al (1989) Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models. J Infect Dis 159:281–292

    Article  PubMed  CAS  Google Scholar 

  55. Bhavnani SM, Hammel JP, Cirincione BB, Wikler MA et al (2005) Use of pharmacokinetic-pharmacodynamic target attainment analyses to support phase 2 and 3 dosing strategies for doripenem. Antimicrob Agents Chemother 49:3944–3947

    Article  PubMed  CAS  Google Scholar 

  56. Clinical Laboratory Standard Institute (2008) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 8th ed. CLSI publication M07-A8, Wayne, PA

    Google Scholar 

  57. Craig WA (1995) Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis 22:89–96

    Article  PubMed  CAS  Google Scholar 

  58. Rodvold KA, Nicolau DP, Lodise TP, Khashab M et al (2009) Identifying exposure targets for treatment of staphylococcal pneumonia with ceftobiprole. Antimicrob Agents Chemother 53:3294–3301

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Nicolau Pharm.D., FCCP, FIDSA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Crandon, J.L., Nicolau, D.P. (2012). In Vivo Pharmacodynamic Modeling for Drug Discovery. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_34

Download citation

Publish with us

Policies and ethics