Skip to main content

Trends and Perspectives in Nanoparticles Synthesis

  • Chapter
  • First Online:
Crystallization and Growth of Colloidal Nanocrystals

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

The focus of nanostructured materials is gradually shifting from the synthesis of nanocrystals with a controlled morphology and size to the organization or assembly of those nanocrystals into larger nanostructures in a natural sequence, especially in the use of nanocrystals as fundamental building blocks for the development of functional thin films and devices. In addition, the synthesis of controlled nanocrystals is still a challenge, particularly in the synthesis of transition metal oxides. In this final chapter, the trends in the synthesis of nanocrystals with controlled shapes and exposed facets will be discussed with a focus on metal oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seyed-Razavi, A., Snook, I.K., Barnard, A.S.: Origin of nanomorphology: does a complete theory of nanoparticle evolution exist? J. Mater. Chem. 20, 416 (2010)

    Article  CAS  Google Scholar 

  2. Liu, G., Wang, L., Yang, H.G., Cheng, H.-M., Lu, G.Q.: Titania-based photocatalysts–crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2010)

    Article  Google Scholar 

  3. Halder, A., Kundu, P., Viswanath, B., Ravishankar, N.: Symmetry and shape issues in nanostructuregrowth. J. Mater. Chem. 20, 4763 (2010)

    Article  CAS  Google Scholar 

  4. Xie, X., Li, Y., Liu, Z.-Q., Haruta, M., Shen, W.: Low-temperature oxidation of CO catalysed by Co3O4nanorods. Nature 458, 746 (2009)

    Article  CAS  Google Scholar 

  5. Xie, X., Shen, W.: Morphology control of cobalt oxidenanocrystals for promoting their catalytic performance. Nanoscale 1, 50 (2009)

    Article  CAS  Google Scholar 

  6. Deng, W., Flytzani-Stephanopoulos, M.: On the issue of the deactivation of Au–ceria and Pt–ceria water–gas shift catalysts in practical fuel-cell applications. Angew. Chem. 118, 2343 (2006); Angew. Chem. Int. Ed. 45, 2285 (2006)

    Google Scholar 

  7. Si, R., Flytzani-Stephanopoulos, M.: Shape and crystal-plane effects of nanoscale ceria on the activity of au-CeO2 catalysts for the water–gas shift reaction. Angew. Chem. Int. Ed. 47, 2884 (2008)

    Article  CAS  Google Scholar 

  8. Ferroni, M., Carotta, M.C., Guidi, V., Martinelli, G., Ronconi, F., Sacerdoti, M., Traversa, E.: Preparation and characterization of nanosized titania sensing film. Sens. Actators B 77, 163 (2001)

    Google Scholar 

  9. Zhang, Z., Wang, C.C., Zakaria, R., Ying, J.Y.: Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102, 10871 (1998)

    Article  CAS  Google Scholar 

  10. Hagfeldt, A., Graetzel, M.: Molecular photovoltaics. Acc. Chem. Res. 33, 269–277 (2000)

    Article  CAS  Google Scholar 

  11. Lazzeri, M., Vittadini, A., Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 63, 155409 (2001)

    Article  Google Scholar 

  12. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003)

    Article  Google Scholar 

  13. Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008)

    Article  CAS  Google Scholar 

  14. Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M., Lu, G.Q.: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} Facets. J. Am. Chem. Soc. 131, 4078 (2009)

    Article  CAS  Google Scholar 

  15. Han, X., Kuang, Q., Jin, M., Xie, Z., Zheng, L.: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009)

    Article  CAS  Google Scholar 

  16. Niederberger, M., Colfen, H.: Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. PCCP 8, 3271 (2006)

    Article  CAS  Google Scholar 

  17. Zhang, J., Huang, F., Lin, Z.: Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2, 18 (2010)

    Article  Google Scholar 

  18. Polleux, J., Pinna, N., Antonietti, M., Niederberger, M.: Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv. Mater. 16, 436 (2004)

    Article  CAS  Google Scholar 

  19. Polleux, J., Pinna, N., Antonietti, M., Hess, C., Wild, H., Schlogl, R., Niederberger, M.: Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem. Eur. J. 11, 3541 (2005)

    Article  CAS  Google Scholar 

  20. Niederberger, M., Pinna, N.: Metal Oxide Nanoparticles in Organic Solvents-Synthesis, Formation, Assembly and Application. Springer, London (2009)

    Book  Google Scholar 

  21. Da Silva, R.O., Gonçalves, R.H., Stroppa, D.G., Ramirez, A.J., Leite, E.R.: Synthesis of recrystallized anatase TiO2 mesocrystals with Wulff shape assisted by oriented attachment. Nanoscale 3, 1910 (2011)

    Article  Google Scholar 

  22. Theppaleak, T., Tumcharern, G., Wichai, U., Rutnakornpituk, M.: Synthesis of water dispersible magnetite nanoparticles in the presence of hydrophilic polymers. Polym. Bull. 63, 79 (2009)

    Article  CAS  Google Scholar 

  23. Nath, S., Kaittanis, C., Ramachandran, V., Dalal, N.S., Perez, J.M.: Synthesis, magnetic characterization, and sensing applications of novel dextran-coated iron oxide nanorods. Chem. Mater. 21, 1761 (2009)

    Article  CAS  Google Scholar 

  24. Li, Z., Wei, L., Gao, M., Lei, H.: One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 17, 1001 (2005)

    Article  Google Scholar 

  25. Kyoungja Woo. Hong, J.: Surface modification of hydrophobic iron oxide nanoparticles for clinical applications. IEEE Trans. Magn. 41, 4137 (2005)

    Article  CAS  Google Scholar 

  26. Lu, Y., Yin, Y.D., Mayers, B.T., Xia, Y.N.: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through A Sol–Gel approach. Nano Lett. 2, 183 (2002)

    Article  CAS  Google Scholar 

  27. Lin, C.A.J., Sperling, R.A., Li, J.K., Yang, T.Y., Li, P.Y., Zanella, M., Chang, W.H., Parak, W.G.J.: Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4, 334 (2008)

    Article  CAS  Google Scholar 

  28. Talelli, M., Rijcken, C.J.F., Lammers, T., Seevinck, P.R., Storm, G., van Nostrum, C.F., Hennink, W.E.: Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: Toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir 25, 2060 (2009)

    Article  CAS  Google Scholar 

  29. Kim, S.B., Cai, C., Sun, S., Sweigart, D.A.: Incorporation of Fe3O4 nanoparticles into organometallic coordination polymers by nanoparticle surface modification. Angew. Chem. Int. Ed. 48, 2907 (2009)

    Article  CAS  Google Scholar 

  30. Insin, N., Tracy, J.B., Lee, H., Zimmer, J.P., Westervelt, R.M., Bawendi, M.G.: Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres. ACS Nano 2, 197 (2008)

    Article  CAS  Google Scholar 

  31. Li, X.H., Zhang, D.H., Chen, J.S.: Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. J. Am. Chem. Soc. 128, 8382 (2006)

    Article  CAS  Google Scholar 

  32. Park, J., Yu, M.K., Jeong, Y.Y., Kim, J.W., Lee, K., Phan, V.N., Jon, S.: Antibiofouling amphiphilic polymer-coated superparamagnetic iron oxide nanoparticles: synthesis, characterization, and use in cancer imaging in vivo. J. Mater. Chem. 19, 6412 (2009)

    Article  CAS  Google Scholar 

  33. Wan, S., Huang, J., Yan, H., Liu, K.: Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem. 16, 298 (2006)

    Article  CAS  Google Scholar 

  34. He, H., Zhang, Y., Gao, C., Wu, J.Y.: ‘Clicked’ magnetic nanohybrids with a soft polymer interlayer. Chem. Commun. 45, 1655 (2009)

    Google Scholar 

  35. Shen, L.F., Laibinis, P.E., Hatton, T.A.: Bilayer surfactant stabilized magnetic fluids:  Synthesis and interactions at interfaces. Langmuir 15, 447 (1999)

    Article  CAS  Google Scholar 

  36. Gonsalves, R.H., Cardoso, C.A., Leite, E.R.: Synthesis of colloidal magnetitenanocrystals using high molecular weight solvent. J. Mater. Chem. 20, 1167 (2010)

    Article  Google Scholar 

  37. Gonsalves, R.H., Schreiner, W.H., Leite, E.R.: Synthesis of TiO2 nanocrystals with a high affinity for amine organic compounds. Langmuir 26, 11657 (2010)

    Article  Google Scholar 

  38. Skorodumova, N.V., Baudin, M., Hermansson, K.: Surface properties of CeO2 from first principles. Phys. Rev. B 69, 075401 (2004)

    Article  Google Scholar 

  39. Yang, S., Gao, L.: Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 128, 9330 (2006)

    Article  CAS  Google Scholar 

  40. Dang, F., Kato, K., Imai, H., Wada, S., Haneda, H., Kuwabara, M.: Characteristics of CeO2 nanocubes and related polyhedra prepared by using a liquid–liquid interface. Crys. Growth Des. 10, 4537 (2010)

    Article  CAS  Google Scholar 

  41. Zhang, J., Ohara, S., Umetsu, M., Naka, T., Hatakeyama, Y., Adschiri, T.: Colloidal ceria nanocrystals: A tailor-made crystal morphology in supercritical water. Adv. Mater. 19, 203 (2007)

    Article  CAS  Google Scholar 

  42. Fang, W.Q., Gong, X.-Q., Yang, H.G.: On the unusual properties of anatase TiO2 exposed by highly reactive facets. J. Phys. Chem. Lett. 2, 725–734 (2011)

    Article  CAS  Google Scholar 

  43. Sun, C.H., Yang, X.H., Chen, J.S., Li, Z., Lou, X.W., Li, C., Smith, S.C., Lu, G.Q., Yang, H.G.: Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chem. Commun. 46, 6129–6131 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Roberto Leite .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Edson Roberto Leite and Caue Ribeiro

About this chapter

Cite this chapter

Leite, E.R., Ribeiro, C. (2012). Trends and Perspectives in Nanoparticles Synthesis. In: Crystallization and Growth of Colloidal Nanocrystals. SpringerBriefs in Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1308-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1308-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1307-3

  • Online ISBN: 978-1-4614-1308-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics