Skip to main content

Computer Modeling of Transport Layer Effects

  • Chapter
  • First Online:
WDM Systems and Networks

Part of the book series: Optical Networks ((OPNW))

  • 1491 Accesses

Abstract

This chapter introduces the reader into optical signal representations and the major physical layer effects causing system degradations in the WDM transport layer. Suitable modeling approaches are presented, and typical simulation results are demonstrated. Finally, the chapter focuses on performance degrading effects due to fiber propagation, optical amplification, and signal generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    using VPItransmissionMakerâ„¢Optical Systems, Version 8.6.

References

  1. Lowery AJ, Lenzmann O, Koltchanov I, Moosburger R, Freund R, Richter A, Georgi S, Breuer D, Hamster H (2000) Multiple signal representation simulation of photonic devices, systems, and networks. IEEE J Sel Top Quant Electron 6(2):282–296

    Article  Google Scholar 

  2. User’s Manual (2010) VPItransmissionMaker™ Optical Systems, Version 8.5

    Google Scholar 

  3. Piprek J (ed) (2003) Optoelectronic devices: advanced simulation and analysis. Springer, New York

    Google Scholar 

  4. Richter A, Louchet H, Koltchanov I (2007) Pitfalls when modeling high-speed optical transmission systems. In: Proceedings of IEEE/LEOS Summer Topicals, paper TuE1.1, Portland, OR, pp 238–239

    Google Scholar 

  5. Gowar J (1984) Optical communication systems. Prentice Hall, Englewood Cliffs, pp 71–80

    Google Scholar 

  6. Keiser G (2000) Optical fiber communications, 3rd edn. McGraw-Hill, Boston

    Google Scholar 

  7. Chraplyvy A (1990) Limitations on lightwave communications imposed by optical-fiber nonlinearities. IEEE/OSA J Lightwave Technol 8(10):1548–1557

    Article  Google Scholar 

  8. Agrawal GP (2002) Fiber-optic communication systems, 3rd edn. Wiley Inter-science, New York

    Book  Google Scholar 

  9. Agrawal GP (1995) Nonlinear fiber optics, 3rd edn. Academic Press, New York

    Google Scholar 

  10. Kato T, Koyano Y, Nishimura M (2000) Temperature dependence of chromatic dispersion in various types of optical fiber. Opt Lett 25(16):1156–1158

    Article  Google Scholar 

  11. Liu F et al. (2002) 1.6Tbit/s (40x42.7 Gbit/s) transmission over 3600 km ultra wave fiber with all-Raman amplified 100 km terrestrial spans using ETDM transmitter and receiver. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC), post-deadline paper FC7, Anaheim, CA

    Google Scholar 

  12. Inoue K (1992) Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. IEEE/OSA J Lightwave Technol 10(11):1553–1561

    Article  Google Scholar 

  13. Oppenheim AV, Schafer RW (1989) Discrete-time signal processing. Prentice Hall, Englewood Cliffs, pp 587–622

    Google Scholar 

  14. Mecozzi A, Clausen CB, Shtaif M (2000) Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photonics Technol Lett 12(4):392–394

    Article  Google Scholar 

  15. Essiambre RJ, Mikkelsen B, Raybon G (1999) Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems. Electron Lett 35(18):1576–1578

    Article  Google Scholar 

  16. Mamyshev PV, Mamysheva NA (1999) Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing. Opt Lett 24(21):1454–1456

    Article  Google Scholar 

  17. Clausen CB, Mecozzi A, Shtaif M (2000) Nonlinear intra-channel effects: system impairments and their remedy. In: Proceedings of European conference on optical communications (ECOC), vol 3, Munich, Germany, pp 33–34

    Google Scholar 

  18. Martensson J, Westlund M, Berntson A (2000) Intra-channel pulse interactions in 40 Gbit/s dispersion-managed RZ transmission. Electron Lett 36(3):244–246

    Article  Google Scholar 

  19. Killey RI, Thiele HJ, Mikhailov V, Bayvel P (2000) Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber. IEEE Photonics Technol Lett 12(12):1624–1626

    Article  Google Scholar 

  20. Richter A (2002) Timing jitter in long-haul WDM return-to-zero systems. Dissertation, Technische Universität Berlin, Germany

    Google Scholar 

  21. Breuer D, Schneider M, Vorbeck S, Freund R, Richter A (2004) Design analysis of upgrade strategies from single to double and triple-wavelength-band WDM transmission. In: Proceedings of IEEE Asia-Pacific optical communications conference (APOC), vol 5625, Beijing, China, pp 601–613

    Google Scholar 

  22. Kidorf H, Rottwitt K, Nissov M, Ma M, Rabarijaona E (1999) Pump interactions in a 100-nm bandwidth Raman amplifier. IEEE Photonics Technol Lett 11(5):530–532

    Article  Google Scholar 

  23. Namiki S, Emori Y (2001) Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J Sel Top Quant Electron 7(1):3–16

    Article  Google Scholar 

  24. Kaminow IP, Li T (eds) (2002) Optical fiber telecommunications IVB: systems and impairments. Academic Press, San Diego, CA

    Google Scholar 

  25. Iannone E, Matera F, Mecozzi A, Settembre M (1998) Nonlinear optical communication networks. Wiley, New York

    Google Scholar 

  26. Gordon JP, Kogelnik H (2000) PMD fundamentals: polarization mode dispersion in optical fibers. PNAS 97(9):4541–4550

    Article  Google Scholar 

  27. Wai PKA, Menyuk CR (1996) Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. IEEE/OSA J Lightwave Technol 14(2):148–157

    Article  Google Scholar 

  28. Curti F, Daino B, de Marchis G, Matera F (1990) Statistical treatment of the evolution of the principal states of polarization in single-mode fibers. IEEE/OSA J Lightwave Technol 8(8):1162–1166

    Article  Google Scholar 

  29. Collett E (1993) Polarized light: fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  30. Foschini GJ, Pole CD (1991) Statistical theory of polarization dispersion in single-mode fibers. IEEE/OSA J Lightwave Technol 9(11):1439–1456

    Article  Google Scholar 

  31. Freund R, Molle L, Hanik N, Richter A (2004) Design issues of 40-Gbit/s WDM systems for metro and core network application. In: Proceedings of IEEE Asia-Pacific optical communications conference (APOC), vol 5625, Beijing, China, pp 532–543

    Google Scholar 

  32. Derrickson D (1998) Fiber optic test and measurement. Prentice Hall, Upper Saddle River

    Google Scholar 

  33. Mecozzi A, Shtaif A (2002) The statistics of polarization-dependent loss in optical communication systems. IEEE Photonics Technol Lett 14(3):313–315

    Article  Google Scholar 

  34. Gisin N, Huttner B (1997) Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers. Opt Commun 142(1–3):119–125

    Article  Google Scholar 

  35. Steinkamp A, Vorbeck S, Voges E (2004) Polarization mode dispersion and polarization dependent loss in optical fiber systems. In: Proceedings of SPIE Optics East, vol 5596, Philadelphia, PA, pp 243–254

    Google Scholar 

  36. Antoniades N, Reichmann KC, Iannone PP, Frigo NJ, Levine AM, Roudas I (2006) The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems. IEEE Photonics Technol Lett 18(20):2099–2101

    Article  Google Scholar 

  37. Lee M, Antoniades N, Boskovic A (2002) PDL-induced channel power divergence in a metro WDM network. IEEE Photonics Technol Lett 14(4):561–563

    Article  Google Scholar 

  38. Wang D, Menyuk CR (1999) Polarization evolution due to the Kerr nonlinearity and chromatic dispersion. IEEE/OSA J Lightwave Technol 17(12):2520–2529

    Article  Google Scholar 

  39. Hodzic A, Konrad B, Petermann K (2003) Improvement of system performance in Nx40-Gb/s WDM transmission using alternate polarizations. IEEE Photonics Technol Lett 15(1):153–155

    Article  Google Scholar 

  40. Forzati M, Berntson A, Martensson J (2004) IFWM suppression using APRZ with optimized phase-modulation parameters. IEEE Photonics Technol Lett 16(10):2368–2370

    Article  Google Scholar 

  41. Richter A, Koltchanov I, Lowery A (2004) Photonic design automation of optical communication systems. In: Proceedings of IEEE Asia-Pacific optical communications conference (APOC), vol 5625, Beijing, China, pp 316–327

    Google Scholar 

  42. Bosco G, Carena A, Curri V, Gaudino R, Poggiolini P, Benedetto S (2000) Suppression of spurious tones induced by the split-step method in fiber systems simulation. IEEE Photonics Technol Lett 12(5):489–491

    Article  Google Scholar 

  43. Rasmussen CJ (2001) Simple and fast method for step size determination in computations of signal propagation through nonlinear fibers. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC), paper WDD29-1, Anaheim, CA

    Google Scholar 

  44. Taha TR, Ablowitz MJ (1984) Analytical and numerical aspects of certain nonlinear evolution equations. II. numerical, nonlinear Schroedinger equation. J Comput Phys 55(2):203–230

    Article  MATH  MathSciNet  Google Scholar 

  45. Carena A, Curri V, Gaudino R, Poggiolini P, Benedetto S (1997) A time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effects in fibers. IEEE J Sel Areas Commun 15(4):751–765

    Article  Google Scholar 

  46. Brigham EO (1974) The fast fourier-transform. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  47. Singleton RC (1967) A method for computing the fast Fourier transform with auxiliary memory and limited high-speed storage. IEEE Trans Audio Electroacoustics 15(2):91–98

    Article  Google Scholar 

  48. Yu T, Reimer WM, Grigoryan VS, Menyuk CR (2000) A mean field approach for simulating wavelength-division multiplexed systems. IEEE Photonics Technol Lett 12(4):443–445

    Article  Google Scholar 

  49. Wai PKA, Menyuk CR, Chen HH (1991) Stability of solitons in randomly varying birefringent fibers. Opt Lett 16(16):1231–1233

    Article  Google Scholar 

  50. Marcuse D, Menyuk CR, Wai PKA (1997) Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. IEEE/OSA J Lightwave Technol 15(9):1735–1746

    Article  Google Scholar 

  51. Biondini G, Kath WL, Menyuk CR (2002) Importance sampling for polarization-mode dispersion. IEEE Photonics Technol Lett 14(3):310–312

    Article  Google Scholar 

  52. Menyuk CR (1987) Nonlinear pulse propagation in birefringence optical fibers. IEEE J Quant Electron 23(2):174–176

    Article  MathSciNet  Google Scholar 

  53. Nelson LE, Jopson R (2002) Introduction to polarization mode dispersion in lightwave systems Venice Summer School on PMD, Venice, Italy, pp 24–26

    Google Scholar 

  54. Shtaif M, Mecozzi A (2000) Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion. Opt Lett 25(10):707–709

    Article  Google Scholar 

  55. Richter A, Dazert M, Koltchanov I, Myslivets E, Lowery A (2002) Performance degradations in high-speed (40 Gbit/s +) transmission systems due to polarization mode dispersion. In: Proceedings of IEEE/OSA national fiber optics engineers conference (NFOEC), paper 073, Anaheim, CA

    Google Scholar 

  56. Richter A, Koltchanov I, Kuzmin K, Myslivets E, Freund R (2005) Issues on bit-error rate estimation for fiber-optic communication systems. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), paper NTuH3, Anaheim, CA

    Google Scholar 

  57. Richter A, Koltchanov I, Kuzmin K, Rukhlenko D (2005) Bit-error rate estimation for applications using 40 Gbit/s and higher. In: Proceedings of IEEE workshop on optical transmission and equalization (WOTE), paper B3, Shanghai, China, pp 23–24

    Google Scholar 

  58. Francia C, Bruyere F, Penninckx D, Chbat M (1998) PMD second-order effects on pulse propagation in single-mode optical fibers. IEEE Photonics Technol Lett 10(12):1739–1741

    Article  Google Scholar 

  59. Kogelnik H, Nelson LE, Gordon JP, Jopson RM (2000) Jones matrix for second-order polarization mode dispersion. Opt Lett 25(1):19–21

    Article  Google Scholar 

  60. Eyal A, Marshall WK, Tur M, Yariv A (1999) Representation of second-order polarization mode dispersion. IEEE Electron Lett 35(19):1658–1659

    Article  Google Scholar 

  61. Orlandini A, Vincetti L (2001) A simple and useful model for Jones matrix to evaluate higher order polarization-mode dispersion effects. IEEE Photonics Technol Lett 13(11):1176–1178

    Article  Google Scholar 

  62. Poloyko I, Khilo A, Myslivets E, Volkov V, Koltchanov I, Richter A, Lowery A (2003) Photonic design automation of Raman amplified systems. In: Proceedings of IEEE/OSA national fiber optics engineers conference (NFOEC), paper P29, Atlanta, GA

    Google Scholar 

  63. Photonic Modules Reference Manual (2011) VPItransmissionMaker â„¢Optical Systems, Version 8.6

    Google Scholar 

  64. Rottwitt K, Bromage J, Leng L (2002) Scaling the Raman gain coefficient of optical fibers. In: Proceedings of European conference on optical communications (ECOC), paper S3.03, Copenhagen, Denmark

    Google Scholar 

  65. Grant AR (2002) Calculating the Raman pump distribution to achieve minimum gain ripple. IEEE J Quant Electron 38(11):1503–1509

    Article  MathSciNet  Google Scholar 

  66. Perlin VE, Wintful HG (2002) On distributed Raman amplification for ultrabroad-band long-haul WDM systems. IEEE/OSA J Lightwave Technol 20(3):409–416

    Article  Google Scholar 

  67. Richter A, Koltchanov I, Myslivets E, Khilo A, Shkred G, Freund R (2005) Optimization of multi-pump Raman amplifiers. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), paper NTuB4, Anaheim, CA

    Google Scholar 

  68. Lin Q, Agrawal G (2003) PMD effects in fiber-based Raman amplifiers. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC), paper TuC4, Atlanta, GA

    Google Scholar 

  69. Richter A, Louchet H, Poloyko I, Karelin N, Farina J, Koltchanov I (2009) A parametric approach to optical systems design, optimization and validation. In: Proceedings of European conference on networks and optical communications (NOC), Valladolid, Spain, pp 361–367

    Google Scholar 

  70. Mears RJ, Reekie L, Jauncey IM, Payne DN (1987) Low noise erbium doped fiber amplifier operating at 1.54 μm. IEEE Electron Lett 23(19):1026–1028

    Article  Google Scholar 

  71. Desurvire E (1994) Erbium-doped fiber amplifiers, principles and applications. Wiley, New York

    Google Scholar 

  72. Becker PC, Olsson NA, Simpson JR (1999) Erbium-doped fiber amplifiers, fundamentals and technology. Academic Press, New York

    Google Scholar 

  73. Giles R, Desurvire E (1991) Modeling erbium-doped fiber amplifiers. IEEE/OSA J Lightwave Technol 9(2):271–283

    Article  Google Scholar 

  74. User’s Manual (2011) VPIcomponentMaker ™Optical Amplifiers, Version 8.6

    Google Scholar 

  75. Abramovich F, Bayvel P (1997) Some statistical remarks on the derivation of BER in amplified optical communication systems. IEEE Trans Commun 45(9):1032–1034

    Article  Google Scholar 

  76. Keiser G (2000) Optical fiber communications, 3rd edn. McGraw-Hill, Boston

    Google Scholar 

  77. Collin RE (1992) Foundations for microwave engineering, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  78. Bonnedal D (1996) EDFA gain described with a black box model. In: Proceedings of OSA trends in optics and photonics, optical amplifiers and their applications, vol 5, Washington, D.C., pp 53–56

    Google Scholar 

  79. Burgmeier J, Cords A, März R, Schäffer C, Stummer B (1998) A black box model of EDFA’s operating in WDM systems. IEEE/OSA J Lightwave Technol 16(7):1271–1275

    Article  Google Scholar 

  80. Zhang X, Mitchell A (2000) A simple black box model for erbium-doped fiber amplifiers. IEEE Photonics Technol Lett 12(1):28–30

    Article  Google Scholar 

  81. Jacobsen G, Persson U, Gillner L, Vanin E, Wingstrand S (2000) Pump power dependent black box EDFA model. J Opt Commun 21(5):171–177

    Google Scholar 

  82. Villa JAL, Bo FB, Querol VP, Teixeira AL, Prat Goma J (2008) Extended black box model for fiber length variation of erbium-doped fiber amplifiers. IEEE Photonics Technol Lett 20(24):2063–2065

    Article  Google Scholar 

  83. Richter A, Devatine R, Koltchanov I, Lowery A, Khomchenko D, Yevseyenko D, Moar P (2002) Virtual product prototyping of erbium doped fiber amplifiers for applications in dense WDM systems. In: Proceedings of IEEE/OSA national fiber optics engineers conference (NFOEC), paper 153, Anaheim, CA

    Google Scholar 

  84. Yoo SJB, Xin W, Garratt LD, Young JC, Ellinas G, Chiao JC, Rauch M, Baran JE, Meagher B, Leblanc H, Chang G-K (1998) Observation of prolonged power transients in a reconfigurable multiwavelength network and their suppression by gain-clamping of optical amplifiers. IEEE Photonics Technol Lett 10(11):1659–1661

    Article  Google Scholar 

  85. Richter A, Karelin N, Louchet H, Koltchanov I, Farina J (2010) Dynamic events in optical networks—emulation and performance impact analysis. In: Proceedings of IEEE military communication conference (MILCOM), San Jose, CA, pp 1083–1087

    Google Scholar 

  86. Matsui Y, Mahgerefteh D, Zheng X, Liao C, Fan ZF, McCallion K, Tayebati P (2006) Chirp-managed directly modulated laser (CML). IEEE Photonics Technol Lett 18(2):385–387

    Article  Google Scholar 

  87. Cartledge JC, Srinivasan RC (1997) Extraction of DFB laser rate equation parameters for system simulation purposes. IEEE/OSA J Lightwave Technol 15(5):852–860

    Article  Google Scholar 

  88. Lowery AJ (1992) A two-port bilateral model for semiconductor lasers. IEEE J Quant Electron 28(1):82–92

    Article  Google Scholar 

  89. Arellano C, Mingaleev S, Novitsky A, Koltchanov I, Richter A (2009) Design of complex semiconductor integrated structures. In: Proceedings of IEEE Asia communication and photon conference (ACP) 7631, paper 7631-106, Shanghai, China

    Google Scholar 

  90. Gnauck AH, Korotky SK, Veselka J, Nagal J, Kemmener CT, Mindford WJ, Moser DT (1991) Dispersion penalty reduction using an optical modulator with adjustable chirp. IEEE Photonics Technol Lett 3(10):916–918

    Article  Google Scholar 

  91. Hashimoto JI, Nakano Y, Tada K (1992) Influence of facet reflection on the performance of a DFB laser integrated with an optical amplifier/modulator. IEEE J Quant Electron 28(3):594–603

    Article  Google Scholar 

  92. Koyama F, Iga K (1998) Frequency chirping in external modulators. IEEE/OSA J Lightwave Technol 6(1):87–93

    Article  Google Scholar 

  93. Koltchanov I, Richter A, Myslivets E, Kazmierski C (2005) Complete time and frequency-dependent modeling of electro-absorption modulators. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), paper OME42, Anaheim, CA

    Google Scholar 

  94. Mendoza-Alvarez JG, Coldren LA, Alping A, Yan RH, Hausken T, Lee K, Pedrottin K (1988) Analysis of depletion edge translation lightwave modulators. IEEE/OSA J Lightwave Technol 6(6):793–808

    Article  Google Scholar 

  95. Ahmed M, Yamada M, Saito M (2001) Numerical modeling of intensity and phase noise in semiconductor lasers. IEEE J Quant Electron 37(12):1600–1610

    Article  Google Scholar 

  96. Betti S, De Marchis G, Iannone E (1995) Coherent optical communication systems. Wiley Inter-science, New York

    Google Scholar 

  97. Freund R, Molle L, Hanik N, Richter A (2004) Design issues of 40 Gbit/s WDM-systems for metro and core network application. In: Proceedings of European conference on optical communications (ECOC), paper Tu351, Stockholm, Sweden

    Google Scholar 

  98. Kaminow IP, Koch TL (eds) (1997) Optical fiber telecommunications IIIB. Academic Press, San Diego, CA

    Google Scholar 

  99. Dutta AK, Dutta NK, Fujiwara M (eds) (2002) WDM technologies: active optical components. Academic Press, New York

    Google Scholar 

  100. Arellano C, Louchet H, Koltchanov I, Richter A (2009) Important device limitations of transmitter and receiver concepts when designing 100 G transmission systems. In: Proceedings of IEEE international conference on transparent optical networks (ICTON), paper Tu.C2.3, Azores, Portugal

    Google Scholar 

Download references

Acknowledgment

The author thanks Igor Koltchanov, Hadrien Louchet, Jim Farina, Cristina Arellano, and other (current and former) members of the team at VPIphotonics for sharing their invaluable knowledge and numerous contributions referenced in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Richter, A. (2012). Computer Modeling of Transport Layer Effects. In: Antoniades, N., Ellinas, G., Roudas, I. (eds) WDM Systems and Networks. Optical Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1093-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1093-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1092-8

  • Online ISBN: 978-1-4614-1093-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics