Skip to main content

Retinal Neovascular Disorders: Mouse Models for Drug Development Studies

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Neovascularization is a hallmark of several eye diseases leading to visual impairment, and its epidemiological impact is substantial (Lee et al. 1998). In retinal degenerative disease models, neovascularization is the process by which the choroid and/or retina become infiltrated with new blood vessels. In retinal neovascularization (RNV), sprouting retinal vessels penetrate the inner limiting membrane (ILM) and grow into the vitreous, and in some cases, grow through the avascular outer retina into the subretinal space (Campochiaro 2000). Numerous clinical and ­experimental observations indicate that ischemia (or hypoxia) is the driving force behind RNV (Michaelson and Steedman 1949). Occlusion of retinal vessels leading to ischemia is a feature of diseases with RNV, including diabetic retinopathy (DR) and retinopathy of prematurity (ROP) (Campochiaro 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambati J, Anand A, Fernandez S et al. (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Ashton N (1966) Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. The 33 Francis I. Proctor Lecture. Am J Ophthalmol 62:412–435

    PubMed  CAS  Google Scholar 

  • Besirli CG, Johnson MW (2009) Proliferative diabetic retinopathy. Mayo Clin Proc 84:1054

    Article  PubMed  Google Scholar 

  • Campochiaro PA (2000) Retinal and choroidal neovascularization. J Cell Physiol 184:301–310

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10:133–140

    Article  PubMed  Google Scholar 

  • Eyetech Study Group (2002) Preclinical and phase 1A clinical evaluation of an anti-VEGF ­pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retins 22:43–52

    Article  PubMed  Google Scholar 

  • Das A, McGuire PG (2003) Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res 22:721–748

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus HE, Kang SJ, Berglin L (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29:500–519

    Article  PubMed  Google Scholar 

  • Hahn P, Qian Y, Dentchev T et al. (2004) Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci USA 101:13850–13855

    Article  PubMed  CAS  Google Scholar 

  • Ham DI, Chang K, Chung H (1997) Preretinal neovascularization induced by experimental retinal vein occlusion in albino rats. Korean J Ophthalmol 11:60–64

    PubMed  CAS  Google Scholar 

  • Heckenlively JR, Hawes NL, Friedlander M et al. (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518–522

    Article  PubMed  Google Scholar 

  • Katsuaki M, Akiko M, Matsuoka M et al. (2009) Effects of intraocular ranibizumab and bevacizumab in transgenic mice expressing human vascular endothelial growth factor. Ophthalmology 116:1748–1754

    Article  Google Scholar 

  • Lee P, Wang CC, Adamis AP (1998) Ocular neovascularization: an epidemiologic review. Survey of Ophthalmology 43:245–269

    Article  PubMed  CAS  Google Scholar 

  • Lolley, RN, Schmidt, SY, Farber DB (1974) Alterations in cyclic AMP metabolism associated with photoreceptor degeneration in C3H mouse. J Neurochem 22:701–707

    Article  PubMed  CAS  Google Scholar 

  • Malek G, Johnson LV, Mace BE et al. (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci USA 102:11900–11905

    Article  PubMed  CAS  Google Scholar 

  • Michaelson IC, Steedman HF (1949) Injection of the retinal vascular system in enucleated eyes. Br J Ophthalmol 33:376–379

    Article  PubMed  CAS  Google Scholar 

  • Miller JW (1997) Vascular endothelial growth factor and ocular neovascularization. Am J Pathol 151:13–23

    PubMed  CAS  Google Scholar 

  • Ohno-Matsui K, Hirose A, Yamamoto S, et al. (2002) Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol. 160:711–719

    Article  PubMed  CAS  Google Scholar 

  • Qazi Y, Maddula S, Ambati BK (2009) Mediators of ocular angiogenesis. J Genet 88:495–515

    Article  PubMed  CAS  Google Scholar 

  • Rakoczy PE, Zhang D, Robertson T, et al. (2002) Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 161:1515–1524

    Article  PubMed  CAS  Google Scholar 

  • Ryan SJ (1979) The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 77:707–745

    PubMed  CAS  Google Scholar 

  • Smith RS, Simon JW, Zabeleta A et al. (1999) The bst locus on mouse chromosome 16 is associated with age-related subertinal novasclarization. PNAS 97:2191–2195

    Article  Google Scholar 

  • Ting AY, Lee TK, MacDonald IM (2009) Genetics of age-related macular degeneration. Curr Opin Ophthalmol 20:369–376

    Article  PubMed  Google Scholar 

  • Tobe T, Ortega S, Luna JD et al. (1998) Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153:1641–1646

    Article  PubMed  CAS  Google Scholar 

  • Wright AF, Chakarova CF, Abd El-Aziz MM et al. (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11:273–284

    Article  PubMed  CAS  Google Scholar 

  • Yetemian RY, Brown BM, Craft CM (2010) Neovascularization, enhanced inflammatory response, and age-related cone dystrophy in the Nrl −/− Grk1 −/− mouse retina. Invest Ophthalmol Vis Sci 51:6196–6206

    Google Scholar 

  • Yetemian RY (2010) Elements of photoreceptor homeostasis: investigating phenotypic manifestations and susceptibility to photoreceptor degeneration in genetic knockout models for retinal disease. Dissertation. University of Southern California. ProQuest, LLC. Ann Arbor, MI

    Google Scholar 

  • Zhu X, Brown BM, Li A, et al. (2003) GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina. Journal of Neurosci 23:6152–6160

    CAS  Google Scholar 

  • Zhu X, Brown BM, Rife L, Craft CM (2006) Slowed photoresponse recovery and age related degeneration in cones lacking G protein-coupled receptor kinase 1. In Advances in Experimental Medicine and Biology, Retinal Degenerative Diseases 572:133–139. Hollyfield JG, Anderson RE, LaVail MM, eds. Springer

    Google Scholar 

Download references

Acknowledgments

We thank members of the Mary D. Allen Laboratory for scientific discussions. CMC is the Mary D. Allen Chair in Vision Research, DEI, and a Research to Prevent Blindness (RPB) Senior Scientific Investigator. This work was supported, in part, by NIH Grant EY015851 (CMC), EY03040 (DEI), RPB (DEI & CMC), Dorie Miller, William Hansen Sandberg Memorial Scholarship (RMY), Tony Gray Foundation, Mary D. Allen Foundation (Dr. Richard Newton Lolley Memorial Scholarship [RMY]), and an RD2010 Travel Award (RMY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl M. Craft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Yetemian, R.M., Craft, C.M. (2012). Retinal Neovascular Disorders: Mouse Models for Drug Development Studies. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_33

Download citation

Publish with us

Policies and ethics