Skip to main content

Control of the Host Response to Histoplasma Capsulatum

  • Chapter
  • First Online:
Control of Innate and Adaptive Immune Responses during Infectious Diseases
  • 971 Accesses

Abstract

The mammalian host response to fungal pathogens is complex and varies with the different species in part as a result of differences in biochemical and genetic composition, portals of entry, and morphology. Among the fungal pathogens, Histoplasma capsulatum is one of the few that behaves both as a primary pathogen and as an opportunist, i.e., causes serious life-threatening infection in both immunocompetent and immunocompromised hosts. This fungus is found in the soil in many continents but does manifest a geographic restriction. The highly endemic areas are the midwestern and southeastern regions of the United States and large segments of Central and South America. The portal of entry for this fungus is the lungs. Infection of mammals is coincidental with the disruption of the soil. Most infections resolve spontaneously although the organism establishes a dormant state. Numerous mediators and cell populations must cooperate to effect a successful resolution of ­infection. Primary among them are T cells, macrophages, tumor necrosis factor-α and ­interferon-γ. However, these constituents constitute only a fraction of the mediators and cells that contribute to host regulation of invasion. The chapter herein will explore the elements of the immune response and how each contributes to regulation­. We also will endeavor to define intersections among cell populations and soluble mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acha-Orbea, H., D. J. Mitchell, et al. (1988). “Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention.” Cell 54(2): 263-73.

    PubMed  CAS  Google Scholar 

  • Allen, H. L. and G. S. Deepe, Jr. (2005). “Apoptosis modulates protective immunity to the pathogenic fungus Histoplasma capsulatum.” J Clin Invest 115(10): 2875–85.

    PubMed  CAS  Google Scholar 

  • Allendoerfer, R. and G. S. Deepe, Jr. (1997). “Intrapulmonary response to Histoplasma capsulatum in gamma interferon knockout mice.” Infect Immun 65(7): 2564–9.

    PubMed  CAS  Google Scholar 

  • Allendoerfer, R. and G. S. Deepe, Jr. (1998). “Blockade of endogenous TNF-α exacerbates ­primary and secondary pulmonary histoplasmosis by differential mechanisms.” J Immunol 160(12): 6072–82.

    PubMed  CAS  Google Scholar 

  • Allendoerfer, R. and G. S. Deepe, Jr. (2000). “Regulation of infection with Histoplasma capsulatum by TNFR1 and -2.” J Immunol 165(5): 2657–64.

    PubMed  CAS  Google Scholar 

  • Allendoerfer, R., G. P. Biovin, et al. (1997). “Modulation of immune responses in murine pulmonary histoplasmosis.” J. Infect. Dis. 175(4): 905–14.

    PubMed  CAS  Google Scholar 

  • Allendorfer, R., G. D. Brunner, et al. (1999). “Complex requirements for nascent and memory immunity in pulmonary histoplasmosis.” J Immunol 162(12): 7389–96.

    PubMed  CAS  Google Scholar 

  • Artz, R. P. and W. E. Bullock (1979). “Immunoregulatory responses in experimental disseminated histoplasmosis: depression of T-cell-dependent and T-effectory responses by activation of splenic suppressor cells.” Infect Immun 23(3): 893–902.

    PubMed  CAS  Google Scholar 

  • Belkaid, Y. (2003). “The role of CD4+CD25+ regulatory T cells in Leishmania infection.” Expert Opin Biol Ther 3(6): 875–85.

    PubMed  CAS  Google Scholar 

  • Belkaid, Y. and B. T. Rouse (2005). “Natural regulatory T cells in infectious disease.” Nat Immunol 6(4): 353–60.

    PubMed  CAS  Google Scholar 

  • Belkaid, Y., C. A. Piccirillo, et al. (2002). “CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity.” Nature 420(6915): 502–7.

    PubMed  CAS  Google Scholar 

  • Bettelli, E., T. Korn, et al. (2007). “Th17: the third member of the effector T cell trilogy.” Curr Opin Immunol 19(6): 652-7.

    PubMed  CAS  Google Scholar 

  • Brummer, E. and D. A. Stevens (1994). “Effect of macrophage colony-stimulating factor (M-CSF) on macrophage morphology, phagocytosis, and intracellular multiplication of Histoplasma capsulatum.” Int J Immunopharmacol 16(2): 171–6.

    PubMed  CAS  Google Scholar 

  • Brummer, E., N. Kurita, et al. (1991). “Fungistatic activity of human neutrophils against Histoplasma capsulatum: correlation with phagocytosis.” J Infect Dis 164(1): 158–62.

    PubMed  CAS  Google Scholar 

  • Bullock, W. E. (1993). “Interactions between human phagocytic cells and Histoplasma capsulatum.” Arch Med Res 24(3): 219–23.

    PubMed  CAS  Google Scholar 

  • Bullock, W. E. and S. D. Wright (1987). “Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages.” J Exp Med 165(1): 195–210.

    PubMed  CAS  Google Scholar 

  • Busch, D. H., I. Pilip, et al. (1998). “Evolution of a complex T cell receptor repertoire during ­primary and recall bacterial infection.” J Exp Med 188(1): 61–70.

    PubMed  CAS  Google Scholar 

  • Cain, J. A. and G. S. Deepe, Jr. (1998). “Evolution of the primary immune response to Histoplasma capsulatum in murine lung.” Infect Immun 66: 1473–1481.

    PubMed  CAS  Google Scholar 

  • Cain, J. A. and G. S. Deepe, Jr. (2000). “Interleukin-12 neutralization alters lung inflammation and leukocyte expression of CD80, CD86, and major histocompatibility complex class II in mice infected with Histoplasma capsulatum.” Infect Immun 68: 2069–2076.

    PubMed  CAS  Google Scholar 

  • Cosma, C. L., O. Humbert, et al. (2004). “Superinfecting mycobacteria home to established tuberculous granulomas.” Nat Immunol 5(8): 828–35.

    PubMed  CAS  Google Scholar 

  • Couto, M. A., L. Liu, et al. (1994). “Inhibition of intracellular Histoplasma capsulatum replication by murine macrophages that produce human defensin.” Infect Immun 62(6): 2375–8.

    PubMed  CAS  Google Scholar 

  • Davis, J. M. and L. Ramakrishnan (2009). “The role of the granuloma in expansion and dissemination of early tuberculous infection.” Cell 136(1): 37–49.

    PubMed  CAS  Google Scholar 

  • Davis, J. M., H. Clay, et al. (2002). “Real-time visualization of mycobacterium-macrophage ­interactions leading to initiation of granuloma formation in zebrafish embryos.” Immunity 17(6): 693–702.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr. (1994). “Role of CD8+ T cells in host resistance to systemic infection with Histoplasma capsulatum in mice.” J Immunol 152(7): 3491–500.

    PubMed  Google Scholar 

  • Deepe, G. S. (2007). “Tumor necrosis factor-α antagonism by the murine tumor necrosis factor-alpha receptor 2-Fc fusion protein exacerbates histoplasmosis in mice.” J Interferon Cytokine Res 27(6): 471–80.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr. (2010). Histoplasma capsulatum. Principles and Practices of Infectious Diseases. B. J. Mandell GL, Dolin R. Philadelphia, Elsevier Churchill Livingstone. 2: 3305–3318.

    Google Scholar 

  • Deepe, G. S., Jr. and R. S. Gibbons (2002). “Cellular and molecular regulation of vaccination with heat shock protein 60 from Histoplasma capsulatum.” Infect Immun 70(7): 3759–67.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr. and R. S. Gibbons (2003). “Protective and memory immunity to Histoplasma capsulatum in the absence of IL-10.” J Immunol 171(10): 5353–62.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr. and R. S. Gibbons (2006). “T cells require tumor necrosis factor-α to provide protective immunity in mice infected with Histoplasma capsulatum.” J Infect Dis 193(2): 322–30.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr. and R. S. Gibbons (2008). “TNF-α Antagonism Generates a Population of Antigen-Specific CD4+CD25+ T Cells That Inhibit Protective Immunity in Murine Histoplasmosis.” J Immunol 180(2): 1088–97.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr. and R. S. Gibbons (2009). “Interleukins 17 and 23 influence the host response to Histoplasma capsulatum.” J Infect Dis 200(1): 142–51.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr. and M. McGuinness (2006). “Interleukin-1 and host control of pulmonary histoplasmosis.” J Infect Dis 194(6): 855–64.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr., R. Gibbons, et al. (1999). “Neutralization of endogenous granulocyte-macrophage colony-stimulating factor subverts the protective immune response to Histoplasma capsulatum.” J Immunol 163(9): 4985–93.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr., R. S. Gibbons, et al. (2002). “Discordance between T-cell receptor expression and effector function in mice infected with Histoplasma capsulatum.” Infect Immun 70(3): 1648–52.

    PubMed  CAS  Google Scholar 

  • Deepe, G. S., Jr., R. S. Gibbons, et al. (2008). “Histoplasma capsulatum manifests preferential invasion of phagocytic subpopulations in murine lungs.” J Leukoc Biol 84(3): 669–78.

    PubMed  CAS  Google Scholar 

  • Eisenhauer, P. B. and R. I. Lehrer (1992). “Mouse neutrophils lack defensins.” Infect Immun 60(8): 3446–7.

    PubMed  CAS  Google Scholar 

  • Eissenberg, L. G., P. H. Schlesinger, et al. (1988). “Phagosome-lysosome fusion in P388D1 ­macrophages infected with Histoplasma capsulatum.” J Leukoc Biol 43(6): 483–91.

    PubMed  CAS  Google Scholar 

  • Eissenberg, L. G., W. E. Goldman, et al. (1993). “Histoplasma capsulatum modulates the acidification of phagolysosomes.” J Exp Med 177(6): 1605–11.

    PubMed  CAS  Google Scholar 

  • Fleischmann, J., B. Wu-Hsieh, et al. (1990). “The intracellular fate of Histoplasma capsulatum in human macrophages is unaffected by recombinant human interferon-gamma.” J Infect Dis 161(1): 143–5.

    PubMed  CAS  Google Scholar 

  • Franceschini, D., M. Paroli, et al. (2009). “PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV.” J Clin Invest 119(3): 551–64.

    PubMed  CAS  Google Scholar 

  • Gildea, L. A., R. E. Morris, et al. (2001). “Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells.” J Immunol 166(2): 1049–56.

    PubMed  CAS  Google Scholar 

  • Gildea, L. A., R. Gibbons, et al. (2003). “Overexpression of interleukin-4 in lungs of mice impairs elimination of Histoplasma capsulatum.” Infect Immun 71(7): 3787–93.

    PubMed  CAS  Google Scholar 

  • Gildea, L. A., G. M. Ciraolo, et al. (2005). “Human dendritic cell activity against Histoplasma capsulatum is mediated via phagolysosomal fusion.” Infect Immun 73(10): 6803–11.

    PubMed  CAS  Google Scholar 

  • Gomez, A. M., W. E. Bullock, et al. (1988). “Role of L3T4+ T cells in host defense against Histoplasma capsulatum.” Infect Immun 56(7): 1685–91.

    PubMed  CAS  Google Scholar 

  • Gomez, F. J., R. Allendoerfer, et al. (1995). “Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis.” Infect Immun 63(7): 2587–95.

    PubMed  CAS  Google Scholar 

  • Gomez, F. J., J. A. Cain, et al. (1998). “Vbeta4(+) T cells promote clearance of infection in murine pulmonary histoplasmosis.” J Clin Invest 102(5): 984–95.

    PubMed  CAS  Google Scholar 

  • Gomez, F. J., E. O. Woodward, et al. (2001). “Vβ6+ and Vβ4+ T cells exert cooperative activity in clearance of secondary infection with Histoplasma capsulatum.” J Immunol 166(4): 2855–62.

    PubMed  CAS  Google Scholar 

  • Gomez, F. J., R. Pilcher-Roberts, et al. (2008). “Histoplasma capsulatum cyclophilin A mediates attachment to dendritic cell VLA-5.” J Immunol 181(10): 7106–14.

    PubMed  CAS  Google Scholar 

  • Guimaraes, A. J., S. Frases, et al. (2009). “Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum.“ Infect Immun 77(4): 1357–67.

    PubMed  CAS  Google Scholar 

  • Guimaraes, A. J., S. Frases, et al. (2010). “Agglutination of Histoplasma capsulatum by IgG monoclonal antibodies against Hsp60 impacts macrophage effector functions.” Infect Immun.79(2): 918–27

    PubMed  Google Scholar 

  • Hamada, S., M. Umemura, et al. (2008). “IL-17A produced by γΔ T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver.” J Immunol 181(5): 3456–63.

    PubMed  CAS  Google Scholar 

  • Heninger, E., L. H. Hogan, et al. (2006). “Characterization of the Histoplasma capsulatum-induced granuloma.” J Immunol 177(5): 3303–13.

    PubMed  CAS  Google Scholar 

  • Hirsch, C. S., Z. Toossi, et al. (1999). “Apoptosis and T cell hyporesponsiveness in pulmonary tuberculosis.” J Infect Dis 179(4): 945–53.

    PubMed  CAS  Google Scholar 

  • Hotchkiss, R. S., K. W. Tinsley, et al. (2001). “Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans.” J Immunol 166(11): 6952–63.

    PubMed  CAS  Google Scholar 

  • Hwang, L., D. Hocking-Murray, et al. (2003). “Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray.” Mol Biol Cell 14(6): 2314–26.

    PubMed  CAS  Google Scholar 

  • Inglis, D. O., C. A. Berkes, et al. (2010). “Conidia but not yeast cells of the fungal pathogen Histoplasma capsulatum trigger a type I interferon innate immune response in murine macrophages.” Infect Immun 78(9): 3871–82.

    PubMed  CAS  Google Scholar 

  • Ishikawa, H., Y. Li, et al. (1993). “Cytotoxic and interferon γ -producing activities of gamma delta T cells in the mouse intestinal epithelium are strain dependent.” Proc Natl Acad Sci USA 90(17): 8204–8.

    PubMed  CAS  Google Scholar 

  • Keir, M. E., L. M. Francisco, et al. (2007). “PD-1 and its ligands in T-cell immunity.” Curr Opin Immunol 19(3): 309–14.

    PubMed  CAS  Google Scholar 

  • Kim, S., K. B. Elkon, et al. (2004). “Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells.” Immunity 21(5): 643–53.

    PubMed  CAS  Google Scholar 

  • Kimura, A., T. Naka, et al. (2007). “IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells.” Proc Natl Acad Sci USA 104(29): 12099–104.

    PubMed  CAS  Google Scholar 

  • Kindler, V., A. P. Sappino, et al. (1989). “The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection.” Cell 56(5): 731–40.

    PubMed  CAS  Google Scholar 

  • Kroetz, D. N. and G. S. Deepe, Jr. (2010). “CCR5 dictates the equilibrium of proinflammatory IL-17+ and regulatory Foxp3+ T cells in fungal infection.” J Immunol 184(9): 5224–31.

    PubMed  CAS  Google Scholar 

  • Kurita, N., E. Brummer, et al. (1991). “Antifungal activity of murine polymorphonuclear neutrophils against Histoplasma capsulatum.” J Med Vet Mycol 29(3): 133–43.

    PubMed  CAS  Google Scholar 

  • Lane, T. E., B. A. Wu-Hsieh, et al. (1993). “Gamma interferon cooperates with lipopolysaccharide to activate mouse splenic macrophages to an antihistoplasma state.” Infect Immun 61(4): 1468–73.

    PubMed  CAS  Google Scholar 

  • Lane, T. E., B. A. Wu-Hsieh, et al. (1994). “Antihistoplasma effect of activated mouse splenic macrophages involves production of reactive nitrogen intermediates.” Infect Immun 62(5): 1940–5.

    PubMed  CAS  Google Scholar 

  • Lazar-Molnar, E., A. Gacser, et al. (2008). “The PD-1/PD-L costimulatory pathway critically affects host resistance to the pathogenic fungus Histoplasma capsulatum.” Proc Natl Acad Sci USA 105(7): 2658–63.

    PubMed  CAS  Google Scholar 

  • Lin, J. S. and B. A. Wu-Hsieh (2004). “Functional T cells in primary immune response to histoplasmosis.” Int Immunol 16(11): 1663–73.

    PubMed  CAS  Google Scholar 

  • Lin, J. S., C. W. Yang, et al. (2005). “Dendritic cells cross-present exogenous fungal antigens to stimulate a protective CD8 T cell response in infection by Histoplasma capsulatum.” J Immunol 174(10): 6282–91.

    PubMed  CAS  Google Scholar 

  • Lin, J. S., J. H. Huang, et al. (2010). “Distinct roles of complement receptor 3, Dectin-1, and sialic acids in murine macrophage interaction with Histoplasma yeast.” J Leukoc Biol 88(1): 95–106.

    PubMed  CAS  Google Scholar 

  • Long, K. H., F. J. Gomez, et al. (2003). “Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages.” J Immunol 170(1): 487–94.

    PubMed  CAS  Google Scholar 

  • Lopes, L. C., A. J. Guimaraes, et al. (2010). “A Histoplasma capsulatum-specific IgG1 isotype monoclonal antibody, H1C, to a 70-kilodalton cell surface protein is not protective in murine histoplasmosis.” Clin Vaccine Immunol 17(7): 1155–8.

    PubMed  Google Scholar 

  • Luther, S. A. and J. G. Cyster (2001). “Chemokines as regulators of T cell differentiation.” Nat Immunol 2(2): 102–7.

    PubMed  CAS  Google Scholar 

  • Marion, C. L., C. A. Rappleye, et al. (2006). “An α-(1,4)-amylase is essential for α-(1,3)-glucan production and virulence in Histoplasma capsulatum.” Mol Microbiol 62(4): 970–83.

    PubMed  CAS  Google Scholar 

  • Mayfield, J. A., M. F. Fontana, et al. (2010). “Genetic control of immune cell types in fungal disease.” Proc Natl Acad Sci USA.107(51): 22202–6

    PubMed  CAS  Google Scholar 

  • Medeiros, A. I., C. L. Silva, et al. (1999). “Leukotrienes are involved in leukocyte recruitment induced by live Histoplasma capsulatum or by the β-glucan present in their cell wall.” Br J Pharmacol 128(7): 1529–37.

    PubMed  CAS  Google Scholar 

  • Medeiros, A. I., A. Sa-Nunes, et al. (2008). “Leukotrienes are potent adjuvant during fungal infection: effects on memory T cells.” J Immunol 181(12): 8544–51.

    PubMed  CAS  Google Scholar 

  • Mellado, M., J. M. Rodriguez-Frade, et al. (2001). “Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation.” Annu Rev Immunol 19: 397–421.

    PubMed  CAS  Google Scholar 

  • Mendez, S., S. K. Reckling, et al. (2004). “Role for CD4+ CD25+ regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity.” J Exp Med 200(2): 201–10.

    PubMed  CAS  Google Scholar 

  • Mills, K. H. (2004). “Regulatory T cells: friend or foe in immunity to infection?” Nat Rev Immunol 4(11): 841–55.

    PubMed  CAS  Google Scholar 

  • Newman, S. L. and L. Gootee (1992). “Colony-stimulating factors activate human macrophages to inhibit intracellular growth of Histoplasma capsulatum yeasts.” Infect Immun 60(11): 4593–7.

    PubMed  CAS  Google Scholar 

  • Newman, S. L., C. Bucher, et al. (1990). “Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. Cellular cytoskeleton requirement for attachment and ingestion.” J Clin Invest 85(1): 223–30.

    PubMed  CAS  Google Scholar 

  • Newman, S. L., L. Gootee, et al. (1991). “Inhibition of intracellular growth of Histoplasma capsulatum yeast cells by cytokine-activated human monocytes and macrophages.” Infect Immun 59(2): 737–41.

    PubMed  CAS  Google Scholar 

  • Newman, S. L., L. Gootee, et al. (1993). “Human neutrophil-mediated fungistasis against Histoplasma capsulatum. Localization of fungistatic activity to the azurophil granules.” J Clin Invest 92(2): 624–31.

    PubMed  CAS  Google Scholar 

  • Newman, S. L., L. Gootee, et al. (1994). “Chloroquine induces human macrophage killing of Histoplasma capsulatum by limiting the availability of intracellular iron and is therapeutic in a murine model of histoplasmosis.” J Clin Invest 93(4): 1422–9.

    PubMed  CAS  Google Scholar 

  • Newman, S. L., L. Gootee, et al. (2000). “Identification of constituents of human neutrophil azurophil granules that mediate fungistasis against Histoplasma capsulatum.” Infect Immun 68(10): 5668–72.

    PubMed  CAS  Google Scholar 

  • Newman, S. L., W. Lemen, et al. (2010). “Dendritic cells restrict the transformation of Histoplasma capsulatum conidia into yeasts.” Med Mycol.49(4): 356–64

    PubMed  Google Scholar 

  • Nickerson, D. A., R. A. Havens, et al. (1981). “Immunoregulation in disseminated histoplasmosis: characterization of splenic suppressor cell populations.” Cell Immunol 60(2): 287–97.

    PubMed  CAS  Google Scholar 

  • Nosanchuk, J. D., J. N. Steenbergen, et al. (2003). “Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum.” J Clin Invest 112(8): 1164–75.

    PubMed  CAS  Google Scholar 

  • Oppermann, M. (2004). “Chemokine receptor CCR5: insights into structure, function, and regulation.” Cell Signal 16(11): 1201–10.

    PubMed  CAS  Google Scholar 

  • Peng, J. K., J. S. Lin, et al. (2005). “The combined effect of IL-4 and IL-10 suppresses the generation of, but does not change the polarity of, type-1 T cells in Histoplasma infection.” Int Immunol 17(2): 193–205.

    PubMed  CAS  Google Scholar 

  • Rappleye, C. A., L. G. Eissenberg, et al. (2007). “Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor.” Proc Natl Acad Sci USA 104(4): 1366–70.

    PubMed  CAS  Google Scholar 

  • Rossi, D. and A. Zlotnik (2000). “The biology of chemokines and their receptors.” Annu Rev Immunol 18: 217–42.

    PubMed  CAS  Google Scholar 

  • Rot, A. and U. H. von Andrian (2004). “Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells.” Annu Rev Immunol 22: 891–928.

    PubMed  CAS  Google Scholar 

  • Ruberti, G., A. Gaur, et al. (1991). “The T cell receptor repertoire influences V beta element usage in response to myoglobin.” J Exp Med 174(1): 83–92.

    PubMed  CAS  Google Scholar 

  • Saliu, O. Y., C. Sofer, et al. (2006). “Tumor-necrosis-factor blockers: differential effects on mycobacterial immunity.” J Infect Dis 194(4): 486–92.

    PubMed  CAS  Google Scholar 

  • Sallusto, F., C. R. Mackay, et al. (2000). “The role of chemokine receptors in primary, effector, and memory immune responses.” Annu Rev Immunol 18: 593–620.

    PubMed  CAS  Google Scholar 

  • Sa-Nunes, A., A. I. Medeiros, et al. (2006). “Gr-1+ cells play an essential role in an experimental model of disseminated histoplasmosis.” Microbes Infect.9(12–13): 1393–401

    PubMed  Google Scholar 

  • Saslaw, S. and J. Schaefer (1956). “Survival of Histoplasma capsulatum in experimental histoplasmosis in mice.” Proc Soc Exp Biol Med 91(3): 412–4.

    PubMed  CAS  Google Scholar 

  • Scheckelhoff, M. and G. S. Deepe, Jr. (2002). “The protective immune response to heat shock protein 60 of Histoplasma capsulatum is mediated by a subset of Vβ8.1/8.2+ T cells.” J Immunol 169(10): 5818–26.

    PubMed  CAS  Google Scholar 

  • Serbina, N. V., T. Jia, et al. (2008). “Monocyte-mediated defense against microbial pathogens.” Annu Rev Immunol 26: 421–52.

    PubMed  CAS  Google Scholar 

  • Shafiani, S., G. Tucker-Heard, et al. (2010). “Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis.” J Exp Med 207(7): 1409–20.

    PubMed  CAS  Google Scholar 

  • Smith, J. G., D. M. Magee, et al. (1990). “Tumor necrosis factor-alpha plays a role in host defense against Histoplasma capsulatum.” J Infect Dis 162(6): 1349–53.

    PubMed  CAS  Google Scholar 

  • Stobo, J. D., S. Paul, et al. (1976). “Suppressor thymus-derived lymphocytes in fungal infection.” J Clin Invest 57(2): 319–28.

    PubMed  CAS  Google Scholar 

  • Strasser, J. E., S. L. Newman, et al. (1999). “Regulation of the macrophage vacuolar ATPase and phagosome-lysosome fusion by Histoplasma capsulatum.” J Immunol 162(10): 6148–54.

    PubMed  CAS  Google Scholar 

  • Szymczak, W. A. and G. S. Deepe, Jr. (2009). “The CCL7-CCL2-CCR2 axis regulates IL-4 production in lungs and fungal immunity.” J Immunol 183(3): 1964–74.

    PubMed  CAS  Google Scholar 

  • Szymczak, W. A. and G. S. Deepe, Jr. (2010). “Antigen-presenting dendritic cells rescue CD4-depleted CCR2−/− mice from lethal Histoplasma capsulatum infection.” Infect Immun 78(5): 2125–37.

    PubMed  CAS  Google Scholar 

  • Thompson, C. B. (1995). “Apoptosis in the pathogenesis and treatment of disease.” Science 267(5203): 1456–62.

    PubMed  CAS  Google Scholar 

  • Vinh, D. C., S. Y. Patel, et al. (2009). “Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia.” Blood.115(8): 1519–29.

    PubMed  Google Scholar 

  • Wallis, R. S., M. S. Broder, et al. (2004). “Granulomatous infectious diseases associated with tumor necrosis factor antagonists.” Clin Infect Dis 38(9): 1261–5.

    PubMed  CAS  Google Scholar 

  • Watson, S. R. and W. E. Bullock (1982). “Immunoregulation in disseminated histoplasmosis: characterization of the surface phenotype of splenic suppressor T lymphocytes.” Infect Immun 37(3): 940–5.

    PubMed  CAS  Google Scholar 

  • Weaver, C. T., R. D. Hatton, et al. (2007). “IL-17 family cytokines and the expanding diversity of effector T cell lineages.” Annu Rev Immunol 25: 821–52.

    PubMed  CAS  Google Scholar 

  • Welsh, R. M., K. Bahl, et al. (2004). “Apoptosis and loss of virus-specific CD8+ T-cell memory.” Curr Opin Immunol 16(3): 271–6.

    PubMed  CAS  Google Scholar 

  • Wheat, L. J., M. Durkin, et al. (2002). “Effect of CD40 ligand on the course of murine histoplasmosis.” Med Mycol 40(5): 501–5.

    PubMed  CAS  Google Scholar 

  • Winters, M. S., Q. Chan, et al. (2010). “Metallomic analysis of macrophages infected with Histoplasma capsulatum reveals a fundamental role for zinc in host defenses.” J Infect Dis 202(7): 1136–45.

    PubMed  CAS  Google Scholar 

  • Wood, K. L., C. A. Hage, et al. (2003). “Histoplasmosis after treatment with anti-tumor necrosis factor-α therapy.” Am J Respir Crit Care Med 167(9): 1279–82.

    PubMed  Google Scholar 

  • Wu-Hsieh, B. (1989). “Relative susceptibilities of inbred mouse strains C57BL/6 and A/J to infection with Histoplasma capsulatum.” Infect Immun 57(12): 3788–92.

    PubMed  CAS  Google Scholar 

  • Wu-Hsieh, B. and D. H. Howard (1989). “Macrophage cell lines P388D1 and IC-21 stimulated with gamma interferon fail to inhibit the intracellular growth of Histoplasma capsulatum.” Infect Immun 57(9): 2903–5.

    PubMed  CAS  Google Scholar 

  • Wu-Hsieh, B. A., G. S. Lee, et al. (1992). “Early activation of splenic macrophages by tumor necrosis factor alpha is important in determining the outcome of experimental histoplasmosis in mice.” Infect Immun 60(10): 4230–8.

    PubMed  CAS  Google Scholar 

  • Wuthrich, M., H. I. Filutowicz, et al. (2003). “Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts.” J Exp Med 197(11): 1405–16.

    PubMed  CAS  Google Scholar 

  • Zamvil, S. S., D. J. Mitchell, et al. (1988). “Predominant expression of a T cell receptor V beta gene subfamily in autoimmune encephalomyelitis.” J Exp Med 167(5): 1586–96.

    PubMed  CAS  Google Scholar 

  • Zerbe, C. S. and S. M. Holland (2005). “Disseminated histoplasmosis in persons with interferon-gamma receptor 1 deficiency.” Clin Infect Dis 41(4): e38–41.

    PubMed  Google Scholar 

  • Zhou, P. and R. A. Seder (1998). “CD40 ligand is not essential for induction of type 1 cytokine responses or protective immunity after primary or secondary infection with Histoplasma ­capsulatum.” J Exp Med 187(8): 1315–24.

    PubMed  CAS  Google Scholar 

  • Zhou, P., M. C. Sieve, et al. (1995). “IL-12 prevents mortality in mice infected with Histoplasma capsulatum through induction of IFN-γ.” J Immunol 155(2): 785–95.

    PubMed  CAS  Google Scholar 

  • Zhou, P., M. C. Sieve, et al. (1997). “Interleukin-12 modulates the protective immune response in SCID mice infected with Histoplasma capsulatum.” Infect Immun 65(3): 936–42.

    PubMed  CAS  Google Scholar 

  • Zhou, P., G. Miller, et al. (1998). “Factors involved in regulating primary and secondary immunity to infection with Histoplasma capsulatum: TNF-α plays a critical role in maintaining secondary immunity in the absence of IFN-γ.” J Immunol 160(3): 1359–68.

    PubMed  CAS  Google Scholar 

  • Zhou, P., B. L. Freidag, et al. (2001). “Perforin is required for primary immunity to Histoplasma capsulatum.” J Immunol 166(3): 1968–74.

    PubMed  CAS  Google Scholar 

  • Zhou, L., Ivanov, II, et al. (2007). “IL-6 programs Th-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.” Nat Immunol 8(9): 967–74.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Deepe Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Deepe, G.S. (2012). Control of the Host Response to Histoplasma Capsulatum . In: Aliberti, J. (eds) Control of Innate and Adaptive Immune Responses during Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0484-2_6

Download citation

Publish with us

Policies and ethics