Skip to main content

Instrumentation for Clinical Applications of Neuromagnetism

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: A Cryogenic Engineering Conference Publication ((ACRE,volume 33))

Abstract

Measurements of the magnetic field of the human brain in a clinical setting require a higher level of performance from the instrumentation than is generally acceptable for laboratory research. We describe several significant advances that are intended for such neuromagnetic applications as well as for a broader range of biomagnetic studies. We report the development of a closed-cycle refrigerator capable of sustaining a SQUID-based sensor without introducing significant deterioration of the noise level. This eliminates the need for liquid cryogen and permits the sensor to be operated in various orientations, including inverted. The performance of a new type of magnetically shielded room is then evaluated for neuromagnetic studies. It has the advantages of being pre-fabricated and of providing a large interior for convenient clinical studies. Its ceiling supports a versatile gantry that holds one or two sets of magnetic sensors. This arrangement, when used with a magnetic system for precisely determining the sensor positions with respect to the patient’s head, is feasible for precise localization of neural sources within the brain. We end with an example of the kinds of clinical studies that are now being carried out with the aid of neuromagnetic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Cohen, Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents, Science 161: 784 (1968).

    Article  CAS  Google Scholar 

  2. D. Cohen, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer, Science 175: 664 (1972).

    Article  CAS  Google Scholar 

  3. G. L. Romani and L. Narici, Principles and clinical validity of the biomagnetic method, Med. Prog thee. Tech. 11: 123 (1986).

    CAS  Google Scholar 

  4. R. Hari and R. J. Ilmoniemi, Cerebral magnetic fields, CRC Critical Rev. in Biomed. Eng. 14:93 (1986).

    Google Scholar 

  5. S. J. Williamson and L. Kaufman, Analysis of neuromagnetic signals, in: “Handbook of Electroencephalography and Clinical Neurophysiology,” A. Gevins and A. Rémond, Elsevier, Amsterdam (1987), Chapter 14.

    Google Scholar 

  6. S. J. Williamson, G. L. Romani, L. Kaufman, and I. Modena, “Biomagnetism: An Interdisciplinary Approach,” Plenum Press, New York (1983).

    Book  Google Scholar 

  7. R. Ilmoniemi, R. Hari, and K. Reinikainen, A four-channel SQUID magnetometer for brain research, Electroenceph clin. Neurophvsiol 58: 467 (1984).

    CAS  Google Scholar 

  8. S. J. Williamson, M. Pelizzone, Y. Okada, L. Kaufman, D. B. Crum, and J. R. Marsden, Magnetoencephalography with an array of SQUID sensors, in: “Proceedings of the 10th International Cryogenic Conference - ICEC10”, Butterworth, London (1984), p. 339.

    Google Scholar 

  9. G. L. Romani, R. Leoni, and C. Salustri, Multichannel instrumentation for biomagnetism, in: “SQUID ‘85: Superconducting Quantum Interference Devices and their Applications,” H. D. Hahlbohm and H. Lübbig, eds., Walter de Gruyter, Berlin (1985), p. 919.

    Google Scholar 

  10. J. E. Zimmerman and R. Radebaugh, Operation of a SQUID in a very low-power cryocooler, in: “NBS Special Publication 508,” National Bureau of Standards (1978).

    Google Scholar 

  11. J. E. Cox and S. A. Wolf, Magnetic and vibrational characteristics of a close cycle refrigerator, in: “NBS Special Publication 508,” National Bureau of Standards (1978).

    Google Scholar 

  12. D. B. Sullivan, J. E. Zimmerman and J. T. Ives, Operation of a Practical SQUID Gradiometer in a Low-Power Stirling Cryocooler, in: “NBS Special Publication 607,” National Bureau of Standards (1981).

    Google Scholar 

  13. E. Tward and R. Sarwinski, A closed cycle cascade Joule Thomson refrigerator for cooling Josephson junction devices, in: “NBS Special Publication 698,” National Bureau of Standards (1985).

    Google Scholar 

  14. Y. Okada, L. Kaufman, and S. J. Williamson, Hippocampal formation as a source of endogenous slow potentials, Electroenceph clin. Neurophysiol 55: 417 (1982).

    Article  Google Scholar 

  15. A. Mager, The Berlin magnetically shielded room (BMSR), Section A: Design and construction, in: “Biomagnetism,’ S.N. Erné, H. D. Hahlbohm, and H. Lübbig, eds., Walter de Gruyter, Berlin (1981), p. 51.

    Google Scholar 

  16. M. Ibuka, H. Hosomatsu, and S. Naito, A SQUID magnetometer using a niobium thin-film microbridge, IEEE Trans. Instrum. and Meas IM-30:251 (1981).

    Google Scholar 

  17. V.O. Kelhä, J. M. Pukki, R. S. Peltonen, A. J. Penttinen, R. J. Ilmoniemi, and J. J. Heino, Design, construction, and performance of a large-volume magnetic shield, IEEE Trans. Magn. MAG-18:260 (1982).

    Google Scholar 

  18. J. E. Zimmerman, SQUID instruments and shielding for low-level magnetic measurements, J. Appl. Phys. 48: 702 (1977).

    Article  Google Scholar 

  19. Fabricated by Vacuumschmelze GmbH, Hanau, Federal Republic of Germany.

    Google Scholar 

  20. J. Vrba, M. Burbank, H. Ensing, A. Fife, E. Heijster, C. Marshall, J. McCubbin, D. McKenzie, M. Tillotson, K. Watkinson, H. Weinberg, and P. Brickett, Integrated biomagnetic robotic system, in: “Biomagnetism: Applications and Theory,” H. Weinberg, G. Stroink, and T. Katila, eds., Pergamon Press, New York (1984), p. 52.

    Google Scholar 

  21. D. Barth, W. Sutherling, J. Engle, Jr., and J. Beatty, Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain, Science 223: 293 (1984).

    Article  CAS  Google Scholar 

  22. J. Beatty, D.S. Barth, and W. Sutherling, Magnetically localizing the sources of epileptic discharges within the human brain, Naval Res. Rev. 2: 20 (1984).

    Google Scholar 

  23. G.B. Ricci, Clinical magnetoencephalography, Nuovo Cimento 2D: 517 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buchanan, D.S., Paulson, D., Williamson, S.J. (1988). Instrumentation for Clinical Applications of Neuromagnetism. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. A Cryogenic Engineering Conference Publication, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9874-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9874-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9876-9

  • Online ISBN: 978-1-4613-9874-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics