Skip to main content

Dependence of the Upper Critical Field and Critical Current on Resistivity in NbN Thin Films

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 32))

Abstract

In this study we have measured Hc2(T) and Jc(4.2K) on a series of NbN thin films which have a fine (5 nm) equiaxed grain structure with no evidence for columnar voids. Samples with a range of critical temperatures and resistivities have been made by varying the percentage of nitrogen in argon during the deposition. The slope of the upper critical field at Tc saturates for ρ > 250 µΩ-cm (the calculated maximum resistivity for NbN). Despite the lack of columnar grain structure, Hc2 is anisotropic, with HC2(┴) > Hc2(//). At low temperatures Hc2(T) is limited by Pauli paramagnetism (λso ≈ 5) which suggests that further increases in Hc2(0) may be possible if additional spin-orbit scattering can be induced in the material. Finally, the critical currents for these very fine-grained samples are similar to the values found by others in larger columnar-grained samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. T. Kampwirth, D. W. Capone II, K. E. Gray, and A Vincens, IEEE Trans. Magn. MAG-21, 459 (1985).

    Article  Google Scholar 

  2. M. Dietrich, IEEE Trans. Magn. MAG-21, 455 (1985).

    Article  Google Scholar 

  3. S. Kasaka, A. Shoji, M. Aoyagi, F. Shinoki, S. Tahara, H. Ohigashi, H. Nakagawa, S. Takada, H. Hayakawa, IEEE Trans. Magn. MAG-21, 102 (1985).

    Article  Google Scholar 

  4. J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard and M. Vabre, IEEE Trans. Magn. MAG-21, 498 (1985).

    Article  Google Scholar 

  5. D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair, and R. B. van Dover, J. Appl. Phys. 54, 6509 (1983).

    Article  Google Scholar 

  6. E. J. Cukauskas, M. Nisenoff, H. Kroger, D. W. Jillie, and L. N. Smith, in: “Advances in Cryogenic Engineering”, vol. 30, 547 (1984).

    Google Scholar 

  7. L. J. Lin, E. K. Track, G. J. Cui, and D. E. Prober, to be published in the Proceedings of the International Conf. on the Materials and Mechanisms of Superconductivity, (1985). Physica B, North-Holland Publishing Co.

    Google Scholar 

  8. M. Ashkin, J. R. Gavaler, J. Greggi, and M. Decroux, J. Appl. Phys. 55, 1044 (1984).

    Article  Google Scholar 

  9. R. R. Hake, Appl Phys. Lett. 10, 189 (1967).

    Article  Google Scholar 

  10. M. Ashkin and J. R. Gavaler, J. Appl. Phys. 49, 2449 (1978).

    Article  Google Scholar 

  11. M. P. Mathur, D. W. Deis, and J. R. Gavaler, J. Appl. Phys. 43 3158 (1972).

    Article  Google Scholar 

  12. A smaller value of y for NbN has recently been reported: γ = 1.7 × 103 erg cm-3 K-2. This will produce a correspondingly smaller value of (dHc2/dT)max =1.9 T/K. G. Geibel, H. Reitschel, A. Junod, M. Pelizzpne and J. Muller, J. Phys. F.: Met. Phys. 15, 405 (1985).

    Article  Google Scholar 

  13. K. E. Gray, R. T. Kampwirth, D. W. Capone II, and R. Vaglio, to be published in the Proceedings of the International Conf. on Materials and Mechanisms of Superconductivity (1985), Physica B, North-Holland Publishing Co.

    Google Scholar 

  14. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147 295 (1966).

    Article  Google Scholar 

  15. H. Jones, O. Fisher and G. Bongi, Solid State Comm. 14, 1061 (1974).

    Article  Google Scholar 

  16. J. R. Gavaler, A. T. Santhanam, A. I. Braginski, M. Ashkin, and M. A. Janocko, IEEE Trans. Magn. MAG-17, 573 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Juang, J.Y., Rudman, D.A., van Dover, R.B., Sinclair, W.R., Bacon, D.D. (1986). Dependence of the Upper Critical Field and Critical Current on Resistivity in NbN Thin Films. In: Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering Materials , vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9871-4_77

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9871-4_77

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9873-8

  • Online ISBN: 978-1-4613-9871-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics