Skip to main content

Acoustical Imaging of near Surface Properties at the Rayleigh Critical Angle

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 12))

Abstract

Surface waves excited on a liquid-solid boundary by an incident longitudinal wave in water can be used to examine flaws and other defects near the surface of a solid. The method involves a focused acoustic source producing longitudinal waves at an average angle of incidence equal to the so-called “Rayleigh” critical angle. At this angle, an incident longitudinal wave in water excites a surface wave along a liquid-solid boundary. This surface wave penetrates roughly one shear wavelength into the solid and then reradiates back into the water along the direction of a would-be specular reflection angle θ. A point-like receiver at a reflection angle θ is used to record the amplitude R(θ) and the phase ?(θ) of this nonspecularly reflected signal. Because these signals are influenced by subsurface flaws, images of R(θ) and ?(θ) obtained by scanning the detector in a plane parallel to the sample (or scanning the sample) holding θ = θ(critical), yield images of these flaws. The quality of these images is good and provides an excellent method of near surface flaw detection. However, certain quantitative aspects of the critical angle phenomenon remain unresolved, making detailed image interpretation difficult. If these problems can be solved, a new and useful tool for nondestructive examaination will become available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. M. Brekhovskikh, Waves in Layered Media, Academic Press, New York (1980).

    MATH  Google Scholar 

  2. J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing, New York (1973).

    MATH  Google Scholar 

  3. B. A. Auld, Acoustic Fields and Waves in Solids, Vol. I &II, John Wiley, New York (1973).

    Google Scholar 

  4. D. H. Towne, Wave Phenomena, Addison Wesley, Reading, MA (1967).

    Google Scholar 

  5. M. Newlands, J. Acoust. Soc. Am., 26, 434–448 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Schoch, Acustica 2, 18 (1952).

    Google Scholar 

  7. L. M. Brekhovskikh, Waves in Layered Media, Academic Press (1960).

    Google Scholar 

  8. F. R. Rollins, Jr., “Ultrasonic Reflectivity at a Liquid-Solid Interface Near the Angle of Incidence for Total Reflection,” Appl. Phys. Lett., Vol. 7, No. 8 (1965).

    Google Scholar 

  9. C. E. Fitch and R. L. Richardson, “Ultrasonic Wave Models for Nondestructive Testing Interfaces with Attenuation,” Progress in Applied Materials Research, edited by E. G. Stanford et. al., Iliffe Books, London, Vol. 8, 79–120 (1967).

    Google Scholar 

  10. F. L. Becker and R. L. Richardson, “Influence of Material Properties on Rayleigh Critical Angle Reflectivity,” J. Acoust. Soc. Am., 51, 1609 (1972).

    Article  ADS  Google Scholar 

  11. F. L. Becker, J. Appl. Phys., 42, 199–202 (1971).

    Article  ADS  Google Scholar 

  12. C. E. Fitch, Acoust. Soc. Am., 40, 989–997 (1966).

    Article  ADS  Google Scholar 

  13. F. L. Becker and R. L. Richardson, “Ultrasonic Critical Angle Reflectivity,” Research Techniques in Nondestructive Testing, edited by R. S. Sharpe, Academic Press, London, 91–130 (1970).

    Google Scholar 

  14. F. L. Becker, C. E. Fitch, and R. L. Richardson, “Ultrasonic Reflection and Transmission Factors for Materials with Attenuation,” Battelle Memorial Inst. Report, BNWL-1283 (1970) (Unpublished).

    Google Scholar 

  15. V. M. Merkulova, Sov. Phys. Acoust., 15, 404 (1970).

    Google Scholar 

  16. F. L. Becker and R. L. Richardson, J. Acoust. Soc. Am., 51, 1609–1617 (1971).

    Article  Google Scholar 

  17. H. L. Bertoni and T. Tamir, “Unified Theory of Rayleigh Angle Phenomena for Acoustic Beams at Liquid-Solid Interfaces,” Appl. Phys. 2, 157–172 (1973).

    Article  ADS  Google Scholar 

  18. H. L. Bertoni and Y. L. Hou, “Effects of Damping in a Solid on Acoustic Beams Reflected at the Rayleigh Critical Angle,” in Proceedings of the 10th Symposium on Nondestructive Testing (NDE), San Antonio, 136, 142 (1975).

    Google Scholar 

  19. T. Tamir and H. L. Bertoni, “Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,” J. Opt. Soc. Am., Vol. 61, No. 10 (1971).

    Google Scholar 

  20. L. E. Pitts, “A Unified Theoretical Description of Ultrasonic Beam Reflections from a Solid Plate in a Liquid,” Ph.D. Thesis, Georgetown University, Washington, D.C. (1976).

    Google Scholar 

  21. L. E. Pitts and T. J. Plona, “Theory of Nonspecular Reflection Effects for an Ultrasonic Beam Incident on a Solid Plate in a Liquid,” IEEE Trans. Sonics Ultrason,, Vol. SU-24, No. 2 (1977).

    Google Scholar 

  22. T. D. K. Ngoc and Walter G. Mayer, “Ultrasonic Nonspecular Reflectivity Near Longitudinal Critical Angle,” J. Appl. Phys., 50 (12) (1979).

    Article  Google Scholar 

  23. T. D. K. Ngoc and W. G. Mayer, “Numerical Integration Method for Reflected Beam Profiles Near Rayleigh Critical Angle,” J. Acoust. Soc. Am., Vol. 67, 1149–1152 (1980).

    Article  ADS  MATH  Google Scholar 

  24. B. P. Hildebrand and F. L. Becker, “Ultrasonic Holography at the Critical Angle,” J. Acoust. Soc. Am., 56, 459–462 (1974).

    Article  ADS  Google Scholar 

  25. Werner G. Neubauer, “Observation of Acoustic Radiation from Plane and Curved Surfaces,” Physical Acoustics, edited by Warren P. Mason and R. N. Thurston, Academic Press, New York, Vol. X, 61–126 (1973). (We have observed that when a focused acoustic source is used to generate surface waves the amplitude reduction is very significant at many different frequencies. The phenomenon of the so-called frequency of least reflection (FLR) is not obvious in our data. Neubauer has argued that the FLR is more a function of the beam geometry than a material property. Our experiments with a sharply focused beam are apparently in qualitative agreement with his observations.)

    Google Scholar 

  26. A. L. Van Buren and M. A. Breazeale, “Reflection of Finite-Amplitude Ultrasonic Waves,” J. Acoust. Soc. Am., Vol. 44, No. 4, 1014–1020 (1968).

    Article  Google Scholar 

  27. O. I. Diachok and W. G. Mayer, “Crystal Surface Orientation by Ultrasonic Beam Displacement,” Acustica, Vol. 26, 267–269 (1972).

    Google Scholar 

  28. B. G. Martin and F. L. Becker, “The Effect of Near-Surface Metallic Property Gradients in Ultrasonic Critical Angle Reflectivity,” Materials Evaluation (1980).

    Google Scholar 

  29. F. L. Becker, “Ultrasonic Determination of Residual Stress,” Battelle Pacific Northwest Laboratories (1973) (Unpublished).

    Google Scholar 

  30. B. G. Martin, “Theory of the Effect of Stress on Ultrasonic Plane-Wave Reflectivity from a Water-Metal Interface,” McDonnell Douglas Corp., Paper #6514 (1978) (Unpublished).

    Google Scholar 

  31. M. A. Breazeale, “Ultrasonic Studies of the Nonlinear Properties of Solids,” International Journal of Nondestructive Testing, Vol. 4, Gorden and Breach, Great Britain (1972).

    Google Scholar 

  32. J. F. Ewen, R. L. Gumshor, and V. H. Weston, “An Analysis of Solitons in Surface Wave Devices,” Purdue University (Aug. 1981) (Unpublished).

    Google Scholar 

  33. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Fitzpatrick, G.L., Hildebrand, B.P., Boland, A.J. (1982). Acoustical Imaging of near Surface Properties at the Rayleigh Critical Angle. In: Ash, E.A., Hill, C.R. (eds) Acoustical Imaging. Acoustical Imaging, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9780-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9780-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9782-3

  • Online ISBN: 978-1-4613-9780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics