Skip to main content

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

  • 297 Accesses

Abstract

This section is based on a preliminary report by Robert Belmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belmas, R. Phénoménologie et modélisation des points chauds. Rapport Interne CEA (1987).

    Google Scholar 

  2. Bowden, F.P., Yoffe, A.D. Initiation and Growth of Explosions in liquids and Solids. Cambridge University Press, Cambridge, UK (1952).

    Google Scholar 

  3. Carrol, M.M., Holt, A.C. Static and dynamic pore collapse relations for ductile porous materials. J. Appl. Phys., 43, no. 4 (1972), p. 1626.

    Article  ADS  Google Scholar 

  4. Carrol, M.M., Kim, K.T. The effect of temperature of viscoplastic pore collapse. J. Appl. Phys., 59, no. 6 (1986), p. 1962.

    Article  ADS  Google Scholar 

  5. Catalano, E. et al. The thermal decomposition and reaction of confined explosives. Proc. 6th Symposium on Detonation, Coronado, CA (1976), p. 214.

    Google Scholar 

  6. Chick, M.C. The effect of intersticial gas on the sensitivity of low density explosives. Proc. 4th Symposium on Detonation, White Oak, MD (1965), p. 349.

    Google Scholar 

  7. Coffey, C.S. The formation of hot spots and the initiation of explosive crystals by shock and impact. Proc. Atelier sur la Détonation, Megève, France (1987), p. 253.

    Google Scholar 

  8. Cook, G.B. Initiation of explosion in solid secondary explosives. Proc. Roy. Soc., 246 (1958), p. 154.

    Article  ADS  Google Scholar 

  9. Dremin, A.N., Shvedov, K.K. On shock wave explosive decomposition. Proc. 6th Symposium on Detonation, Coronado, CA (1976), p. 29.

    Google Scholar 

  10. Field, J E., Swallowe, G.M., Heayens, S.N. Ignition mechanisms of explosives during mechanical deformation. Proc. Roy. Soc. A382 (1982), p. 231.

    Article  ADS  Google Scholar 

  11. Frey, R.B. The initiation of explosives charges by rapid shear. Proc. 7th Symposium on Detonation, Annapolis, MD (1981), p. 36.

    Google Scholar 

  12. Frey, R.B. Cavity collapse in energetic materials. Proc. 8th Symposium on Detonation, Albuquerque, NM (1985), p. 68.

    Google Scholar 

  13. Garner, W.E. Detonation or explosion arising out of thermal decomposition. Trans. Faraday Soc. 34 (1938), p. 985.

    Article  Google Scholar 

  14. Grady, D.E., Kipp, M.E. The growth of unstable, thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solids, 35, no. 1 (1987), p. 95.

    Article  ADS  MATH  Google Scholar 

  15. Howe, P.M. et al. An experimental investigation of the role of shear in initiation of detonation by impact. Proc. 8th Symposium on Detonation, Albuquerque, NM (1985), p. 294.

    Google Scholar 

  16. Khasainov, B.A., Borlsov, A.A., Ermolayev, B.S. Shock wave predetonation processes in porous high explosives. Progr. Astronaut. Aeronaut., 87 (1981), p. 492.

    Google Scholar 

  17. Kipp, M.E. Modeling granular explosive detonation with shear band concepts. Proc. 8th Symposium on Detonation, Albuquerque, NM (1985), p. 35.

    Google Scholar 

  18. Mac Guire, R.R., Tarver, C.M. Chemical decomposition models for the thermal explosion of confined explosives. Proc. 7th Symposium on Detonation, Annapolis, MD (1981), p. 56.

    Google Scholar 

  19. Mader, C.L. Numerical Modeling of Detonations. University of California Press, Berkeley (1979).

    MATH  Google Scholar 

  20. Mader, C.L., Kerschner, J.D. Three dimensional modeling of shock initiation of heterogeneous explosives. 19th Symposium of the Comb. Inst., Haïfa, Israël (1982), p. 685.

    Google Scholar 

  21. Mader, C.L., Kerschner, J.D. The three-dimensional hot spot model applied to PETN, HMX, TATB, NQ. LANL Report 10203 (1984).

    Google Scholar 

  22. Maiden, D.E. A hot spot model for calculating the threshold for shock initiation of pyrotechnics and explosives. 3’ Congrès de Pyrotechnie Spatiale, Juan-lesPins, France (1987), p. 17.

    Google Scholar 

  23. Mampel, K.L. The time dependant conversion formulas for heterogeneous reactions at the interface of solid bodies (transl. by R. McElroy Co, Austin, Texas, 1970 ). Z. Phys. Chem., A187 (1940), p. 43.

    Google Scholar 

  24. Marshall, W.W. The role of interstitial gas in the detonation build-up characteristics of low density granular HMX.

    Google Scholar 

  25. Merzhanov, A.G., Barzikin, V.V., Gontkovskaya, V.T. The problem of hot spot thermal explosion. Dokl. Akad. Nauk. SSSR, 148 no. 2 (1963), p. 380.

    Google Scholar 

  26. Moulard, H., Kury, J.W., Delclos, A. The effect of RDX particle size on the shock sensitivity of cast PBX formulation. Proc. 8th Symposium on Detonation, Albuquerque, NM (1985), p. 902.

    Google Scholar 

  27. Muraour, H. Note on the theory of explosive reaction. Trans. Faraday Soc., 34 (1938), p. 989.

    Article  Google Scholar 

  28. Partom, Y. A void collapse model for shock initiation. Proc. 7th Symposium on Detonation, Annapolis, MD (1981), p. 506.

    Google Scholar 

  29. Seay, G.E., Seely, L.B. Initiation of a low-density PETN pressing by a plane shock wave. J. Appl. Phys., 32 (1961), p. 1092.

    Article  ADS  Google Scholar 

  30. Setchell, R.E. Experimental studies of chemical reactivity during shock initiation of HNS. Proc. 8th Symposium Detonation, Albuquerque, NM (1985), p. 15.

    Google Scholar 

  31. Starkenberg, I. Ignition of solid high explosive by the rapid compression of an adjacent gas layer. Proc. 7th Symposium on Detonation, Annapolis, MD (1981), P. 3.

    Google Scholar 

  32. Stolovy, A. et al. Electron beam initiation of high explosives. Proc. 7th Symposium on Detonation, Annapolis, MD (1981), p. 50.

    Google Scholar 

  33. Swallowe, G.M., Field, J.E. Effects of polymers on the drop weight sensitiveness of explosives. Proc. 7th Symposium on Detonation, Annapolis, MD (1981), p. 24.

    Google Scholar 

  34. Tarver, C.M. et al. The thermal decomposition of explosives with full containment on 1-D geometries. Proc. 17th Symposium of Comb. Inst., Leeds U.K. (1978), p. 1407.

    Google Scholar 

  35. Taylor, P.A. The effect of material structure on the shock sensitivity of porous granular explosives. Proc. 8th Symposium Detonation, Albuquerque, NM (1985), p. 26.

    Google Scholar 

  36. Von Holle, W.G., Tarver, C.M. Temperature measurement of shocked explosives by time-resolved infrared radiometry. A new technique to measure shock induced reactions. Proc. 7th Symposium on Detonation, Annapolis, MD (1981), p. 993.

    Google Scholar 

  37. Walker, E.H. Derivation of the p2i detonation criterion. Proc. 8th Symposium on Detonation, Albuquerque, NM (1985), p. 1119.

    Google Scholar 

  38. Zababakhin, E.I. Collapse of bubbles in a viscous liquid. PMM 24, no. 6 (1960), p. 1129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chéret, R. (1993). Cooperative Mechanisms. In: Detonation of Condensed Explosives. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9284-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9284-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9286-6

  • Online ISBN: 978-1-4613-9284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics