Skip to main content

Using Determinancy of Games to Eliminate Quantifiers

  • Chapter
The Collected Works of J. Richard Büchi
  • 195 Accesses

Abstract

To have recognized the fundamental role that quantifiers play, is one of Frege’s contributions to mathematics. Elimination of quantifiers, however, was not invented by logicians. In fact, it is easily the most important thing that happens in any mathematical proof. Investigation would probably reveal a direct relation between the usefulness of a theorem, and its ability to simplify quantifications. (The same goes for notions, e.g., continuous everywhere versus uniformly continuous). In particular, (what some call) infinity lemmas, or (what others call) combinatorial lemmas, turn out to be simple instructions for replacing bad combinations (∀∃) by more manageable ones (∃∀). Here is a list of examples:

  1. (1)

    Axiom of choice:

    $$\left( {\forall x} \right)\left( {\exists y} \right)Rxy. \equiv .\left( {\exists f} \right)\left( {\forall x} \right)Rxfx$$
    ((1))
  2. (2)

    Infinity lemma (compactness):

    $$\left( {\forall x} \right)\left( {{}_\exists \overline {Zx} } \right)\left( {\forall t} \right){}^xM\left( {\overline X t,\overline Z t} \right). \equiv \left( {{}_\exists Z} \right)\left( {\forall t} \right)M\left( {\overline X t,\overline Z t} \right)$$
    ((1))
  3. (3)

    Ramsey’s lemma:

    $${\left( {{}_\forall Z} \right)^{\inf }}\left( {{}_{\exists y}} \right){\left( {{}_{\exists x}} \right)^y}\left[ {Z{x_A}Z{y_A}\overline R xy} \right]. \supset .{\left( {{}_\exists Z} \right)^{\inf }}\left( {\forall y} \right){\left( {\forall x} \right)^y}\left[ {Z{x_A}Zy \supset Rxy} \right]$$
    ((1))

Why, in the course of a proof, is the right side ∃∀ more desirable? Having arrived at (x)(y)Sxy, I will simply say “let b be one of these x, and so (y)Sby”. Such and “existentiation” permanently eliminates a quantifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • R. Rado, Axiomatic treatment of rank in infinite sets, Canadian J. of Math. 1 (1949), 337–343.

    Article  MathSciNet  MATH  Google Scholar 

  • F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 264–286.

    Article  MATH  Google Scholar 

  • J.R. Büchi, The monadic second order theory of ω 1, Lecture Notes in Math. 328, Springer (1973), 1–127.

    Article  Google Scholar 

  • J.R. Büchi, On a decision method in restricted second order arithmetic, Proc. 1960 Int. Cong, for Logic, Stanford Univ. Press (1962), 1–11.

    Google Scholar 

  • L. Löwenheim, Über Möglichkeiten im Relativekalkul, Math. Ann. 76 (1915), 447–470.

    Article  MathSciNet  Google Scholar 

  • F. Hausdorff, Mengenlehre, 3. Auflage, Dover N.Y. 1944.

    MATH  Google Scholar 

  • R. McNaughton, Testing and generating infinite sequences by finite automata, Inform. and Control 9. (1966), 521–530.

    Article  MathSciNet  MATH  Google Scholar 

  • Büchi and Landweber, Solving sequential conditions by finite state operators, Trans. Am. Math. Soc. 138 (1969) 295–311.

    Google Scholar 

  • D.A. Martin, Measurable cardinals and analytic games, Fu. Math 66 (1970), 287–291.

    MATH  Google Scholar 

  • M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Am. Math. Soc. 141 (1969) 1–35.

    MathSciNet  MATH  Google Scholar 

  • M. Davis, Infinite games of perfect information, Advances in game theory, Ann. of Math. Study 52 (1964), 85–101.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Buchi, J.R. (1990). Using Determinancy of Games to Eliminate Quantifiers. In: Mac Lane, S., Siefkes, D. (eds) The Collected Works of J. Richard Büchi. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8928-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8928-6_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8930-9

  • Online ISBN: 978-1-4613-8928-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics