Skip to main content

Very High Order Accurate TVD Schemes

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 2))

Abstract

A systematic procedure for constructing semi-discrete families of 2m - 1 order accurate, 2m order dissipa-tive, variation diminishing, 2m + 1 point band width, conservation form approximations to scalar conservation laws is presented. Here m is an integer between 2 and 8. Simple first order forward time discretization, used together with any of these approximations to the space derivatives, also results in a fully discrete, variation diminishing algorithm. These schemes all use simple flux limiters, without which each of these fully discrete algorithms is even linearly unstable. Extensions to systems, using a nonlinear field-by-field decomposition are presented, and shown to have many of the same properties as in the scalar case. For linear systems, these nonlinear approximations are variation diminishing, and hence convergent. A new and general criterion for approximations to be variation diminishing is also given. Finally, numerical experiments using some of these algorithms are presented.

Research suppported by NSF Grant No. MCS 82-00788, ARO Grant No. DAAG 29-82 - 0090, NASA Grant No. NAG -1-270, and NASA Consortium Agreement No. NCA 2-1R390-403

Research supported by NASA Grant No. NAG-1–269

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. L. Abrahamsson and S. Osher, Monotone difference schemes for singular Pertubation problems, SIAM J. Num. Anal., V. 19 (1982), pp. 979–991.

    Article  MathSciNet  Google Scholar 

  2. S. R. Chakravarthy, Relaxation Methods for Unfactored Implicit Upwind Schemes, AIAA-84–0165, Reno, NA (1984)

    Google Scholar 

  3. S. R. Chakravarthy and S. Osher, High resolution applications of the Osher upwind scheme for the Euler equations, Proc. AIAA Comp. Fluid Dynamics Conf., Danvers, Mass (1983), pp. 363–372.

    Google Scholar 

  4. S. R. Chakravarthy and S. Osher, Computing with High Resolution Upwind Schemes for Hyperbolic equations, to appear in Proceedings of AMS-SIAM, 1983 Summer Seminar, La Jolla, CA.

    Google Scholar 

  5. S. R. Chakravarthy and S. Osher, A new class of High Accuracy Total Variation Diminishing Schemes for Hyperbolic Conservation Laws, In Preparation.

    Google Scholar 

  6. S. R. Chakravarthy, K. Y. Szema, S. Osher, J. Gorski, A new class off High Accuracy Total Variation Diminishing Schemes for the Navier-Stokes Equations, In Preparation.

    Google Scholar 

  7. P. Colella and P. R. Woodward, The piecewise-parabolic method (PPM) for gas-dynamical simulations, LBL report #14661, (July 1982).

    Google Scholar 

  8. R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch., Rat. Mech. and Analysis, 82 (1983), pp. 27–70.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. S. K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47 (1959). pp. 271–290.

    MathSciNet  Google Scholar 

  10. J. B. Goodman and R. J. LeVeque, On the accuracy of stable schemes for two dimensional conservation laws, Math. Comp., (to appear).

    Google Scholar 

  11. A. Harten, On the Symmetric Form of Systems of Conservation Laws with Entropy, ICASE Rep. No. 81–34, (1981), NASA Langley Research Center, Va.

    Google Scholar 

  12. A. Harten, On a class of High Resolution Total-Variation-Stable Finite- Difference Schemes, SINUM, v.21, pp. 1–23 (1984).

    MathSciNet  MATH  Google Scholar 

  13. A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comp. Phys., 49(1983), pp. 357–393.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. H. O. Kreiss and J. Oliger, Methods for the Approximate Solution of Time Dependent Problems, GARP Publication series No. 10, (1973).

    Google Scholar 

  15. S. N. Kruzkov, First order quasi-linear equations in several independent variables, Math. USSR Sb., 10 (1970), pp. 217–243.

    Article  Google Scholar 

  16. A. Majda and S. Osher, Numerical viscosity and the entropy condition, Comm. Pure Appl. Math., V. 32 (1979), pp. 797–838.

    MathSciNet  Google Scholar 

  17. W. A. Mulder and B. Van Leer, Implicit upwind computations for the Euler equations, AIAA Comp. Fluid Dynamics Conf., Danvers, Mass., (1983), pp. 303–310.

    Google Scholar 

  18. S. Osher, Numerical solution of singular perturbation problems and hyperbolic systems of conservation laws, North Holland Mathematical Studies #47, eds. S. Axelsson, L. S. Frank, and A. van der Sluis, pp. 179–205.

    Google Scholar 

  19. S. Osher, Riemann solvers, the entropy condition, and difference approximations, SINUM, v. 21, (1984), pp. 217–235.

    MathSciNet  MATH  Google Scholar 

  20. S. Osher, Convergence of Generalized MUSCL Schemes, NASA Langley Contractor Report 172306, (1984), Submitted to SINUM.

    Google Scholar 

  21. S. Osher and S. R. Chakravarthy, High resolution schemes and the entropy condition, SINUM, (to appear).

    Google Scholar 

  22. S. Osher and F. Solomon, Upwind schemes for hyperbolic systems of conservation laws, Math. Comp., V. 38 (1982), pp. 339–377.

    Article  MathSciNet  Google Scholar 

  23. P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comp. Phys., V. 43 (1981), pp. 357–372.

    Article  MathSciNet  ADS  Google Scholar 

  24. P. L. Roe, Some contributions to the modelling of discontinuous flows, to appear in Proceedings of AMS-SIAM 1983 Summer Seminar, La Jolla, CA.

    Google Scholar 

  25. R. Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp., v.40 (1983), pp. 91–106.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SINUM (to appear).

    Google Scholar 

  27. E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, NASA Contractor Report 172141, (1983), NASA Langley, Math Comp, (to appear).

    Google Scholar 

  28. B. Van Leer, Towards the ultimate conservative scheme, IL Monotonicity and conservation combined in a second order scheme, J. Comp. Fhys. 14 (1974), pp. 361–376.

    Article  ADS  MATH  Google Scholar 

  29. B. Van Leer. Towards the Ultimate Conservative Finite Difference Scheme HL Upstream-Centered Finite-Difference Schemes for Ideal Compressible Flow, J. Comp. Fhys., v. 23, (1977), pp. 263–275.

    Article  ADS  MATH  Google Scholar 

  30. B. Van Leer, Towards the ultimate conservative difference scheme. IV. A New approach to numerical convection, J. Comp. Phys., 23 (1977), pp. 276–298.

    Article  ADS  MATH  Google Scholar 

  31. H. C. Yee, R. F. Warming, and A. Harten, Implicit total variation diminishing (TVD) shemes for steady state calculations, Proc. AIAA Comp. Fluid Dynamics Conf., Danvers, Mass., (1983), pp. 110–127.

    Google Scholar 

  32. S. T. Zalesak, Fully Multidimensional Flux-Corrected Transport, J. Comp. Fhys., v. 31, (1979), pp. 335–362.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. B. Engquist and S. Osher, Stable and entropy condition satisfying approximations for transonic flow calculations, Math. Comp., 34 (1980), pp. 45–75.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. P. Boris and D. L. Book, Flux-Corrected Transport I — SHASTA, A fluid transport algorithm that works, J. Comp. Phys., v. 11, (1973), pp. 38 – 69.

    Article  ADS  MATH  Google Scholar 

  35. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conference Lectures in Applied Mathematics No. 11 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Osher, S., Chakravarthy, S. (1986). Very High Order Accurate TVD Schemes. In: Dafermos, C., Ericksen, J.L., Kinderlehrer, D., Slemrod, M. (eds) Oscillation Theory, Computation, and Methods of Compensated Compactness. The IMA Volumes in Mathematics and Its Applications, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8689-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8689-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8691-9

  • Online ISBN: 978-1-4613-8689-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics