Skip to main content

Componentwise Error Analysis for Stationary Iterative Methods

  • Conference paper
Linear Algebra, Markov Chains, and Queueing Models

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 48))

Abstract

How small can a stationary iterative method for solving a linear system Ax = b make the error and the residual in the presence of rounding errors? We give a componentwise error analysis that provides an answer to this question and we examine the implications for numerical stability. The Jacobi, Gauss-Seidel and successive over-relaxation methods are all found to be forward stable in a componentwise sense and backward stable in a normwise sense, provided certain conditions are satisfied that involve the matrix, its splitting, and the computed iterates. We show that the stronger property of componentwise backward stability can be achieved using one step of iterative refinement in fixed precision, under suitable assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arioli, J.W. Demmel and I.S. Duff, Solving sparse linear systems with sparse backward error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165–190.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Arioli, I.S. Duff and D. Ruiz, Stopping criteria for iterative solvers, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 138–144.

    Article  MathSciNet  MATH  Google Scholar 

  3. N.F. Benschop and H.C. Ratz, A mean square estimate of the generated roundoff error in constant matrix iterative processes, J. Assoc. Comput. Mach., 18 (1971), pp. 48–62.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.A.M. Bollen, Numerical stability of descent methods for solving linear equations, Numer. Math., 43 (1984), pp. 361–377.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. de Boor and A. Pinkus, Backward error analysis for totally positive linear systems, Numer. Math., 27 (1977), pp. 485–490.

    Article  MATH  Google Scholar 

  6. J.E. Dennis, Jr., and H.F. Walker, Inaccuracy in quasi-Newton methods: Local improvement theorems, Math. Prog. Study, 22 (1984), pp. 70–85.

    MathSciNet  MATH  Google Scholar 

  7. G.H. Golub, Bounds for the round-off errors in the Richardson second order method, BIT, 2 (1962), pp. 212–223.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.H. Golub and C.F. Van Loan, Matrix Computations, Second Edition, Johns Hopkins University Press, Baltimore, Maryland, 1989.

    MATH  Google Scholar 

  9. A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences, Linear Algebra and Appl., 113 (1989), pp. 7–63.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Greenbaum and Z. Strakos, Predicting the behavior of finite precision Lanczos and conjugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.J. Hammarling and J.H. Wilkinson, The practical behaviour of linear iterative methods with particular reference to S.O.R., Report NAC 69, National Physical Laboratory, England, 1976.

    Google Scholar 

  12. N.J. Higham, How accurate is Gaussian elimination?, in Numerical Analysis 1989, Proceedings of the 13th Dundee Conference, D.F. Griffiths and G.A. Watson, eds., Pitman Research Notes in Mathematics 228, Longman Scientific and Technical, 1990, pp. 137–154.

    Google Scholar 

  13. N.J. Higham, The accuracy of solutions to triangular systems, SIAM J. Numer. Anal., 26 (1989), pp. 1252–1265.

    Article  MathSciNet  MATH  Google Scholar 

  14. N.J. Higham, Bounding the error in Gaussian elimination for tridiagonal systems, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 521–530.

    Article  MathSciNet  MATH  Google Scholar 

  15. N.J. Higham, Iterative refinement enhances the stability of QR factorization methods for solving linear equations, BIT, 31 (1991), pp. 447–468.

    Article  MathSciNet  MATH  Google Scholar 

  16. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.

    MATH  Google Scholar 

  17. M. Jankowski and H. Wozniakowski, Iterative refinement implies numerical stability, BIT, 17 (1977), pp. 303–311.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.S. Lynn, On the round-off error in the method of successive over-relaxation, Math. Comp., 18 (1964), pp. 36–49.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numer. Math., 6 (1964), pp. 405–409.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.L. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear system, J. Assoc. Comput. Mach., 14 (1967), pp. 543–548.

    Article  MathSciNet  MATH  Google Scholar 

  21. L.N. Trefethen, Pseudospectra of matrices, Technical Report 91/10, Oxford University Computing Laboratory, Oxford, 1991; to appear in the Proceedings of the 14th Dundee conference, D.F. Griffiths and G.A. Watson, eds.

    Google Scholar 

  22. L.N. Trefethen and R.S. Schreiber, Average-case stability of Gaussian elimination, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 335–360.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Wozniakowski, Numerical stability of the Chebyshev method for the solution of large linear systems, Numer. Math., 28 (1977), pp. 191–209.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Wozniakowski, Roundoff-error analysis of iterations for large linear systems, Numer. Math., 30 (1978), pp. 301–314.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Wozniakowski, Roundoff-error analysis of a new class of conjugate-gradient algorithms, Linear Algebra and Appl., 29 (1980), pp. 507–529.

    Article  MathSciNet  MATH  Google Scholar 

  26. D.M. Young, A historical overview of iterative methods, Computer Physics Communications, 53 (1989), pp. 1–17.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Higham, N.J., Knight, P.A. (1993). Componentwise Error Analysis for Stationary Iterative Methods. In: Meyer, C.D., Plemmons, R.J. (eds) Linear Algebra, Markov Chains, and Queueing Models. The IMA Volumes in Mathematics and its Applications, vol 48. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8351-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8351-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8353-6

  • Online ISBN: 978-1-4613-8351-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics