Skip to main content

Prospects for the Detection of Higher Order Weak Processes and the Study of Weak Interactions at High Energy

  • Chapter
Fundamental Interactions in Physics and Astrophysics

Part of the book series: Studies in the Natural Sciences ((SNS,volume 3))

  • 100 Accesses

Abstract

The first observation of weak interactions is now over 75 years old.1 An impressive array of understanding of a vast number of phenomena has been achieved for low energy processes, and yet some of the simplest questions that can be asked about the basic nature of the weak interaction can not presently be answered. In many ways we know less about this interaction than we do about the strong interaction. Apparently Heisenberg was the first to recognize the significance of the dimensionality of the coupling constant of the lowest order currentcurrent interaction,2 the lowest order interaction being

$$\textup{H}_{\textup{eff}}=\frac{\textup{G}}{\sqrt{2}}\ \textup{j}_{\lambda}\textup{j}_{\lambda}^{+}$$

, where \(\textup{j}_{\lambda},\ \textup{j}_{\lambda}^{+}\) are appropriate currents and G is the coupling constant. G has the dimensions of (length) 2 or (1/m)2 with a numerical value

$$\textup{G}=\left (1.01 \times 10^{-5} \right)/\left ( \textup{m}_{\textup{P}} \right)^{2}$$

.

Supported in part by the United States Atomic Energy Commission under Contract AT (11–1)-881, COO-881–325.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Becquerel, Compt. rend. 122, 420 (1896).

    Google Scholar 

  2. W. Heisenberg, Physik 101, 533 (1936).

    Article  MATH  Google Scholar 

  3. See, for example, L. B. Okun, “Weak Interactions of Elementary Particles”, (Addison-Wesley Publishing Company, Inc. 1965), Chapter 18.

    Google Scholar 

  4. H. Yukawa, Proc. Phys-Math Soc., Japan 17, 48 (1935).

    MATH  Google Scholar 

  5. See, for example, W. Kummer and G. Segré, Nucl. Phys. 64, 585 (1965) and N. Christ, Phys. Rev. 176, 2086 (1968).

    Article  MATH  Google Scholar 

  6. I. Ya Pomeranchuk, Soviet Journal of Nuclear Physics 11, 477 (1970).

    Google Scholar 

  7. T. Appelquist and J. D. Bjorken, “On Weak Interactions at High Energies”, SLAC preprint.

    Google Scholar 

  8. A. D. Dolgov, L. B. Okun and V. I. Zakharov, “Weak Interactions of Colliding Lepton Beams with Energy (102-103) GeV”, preprint from the Institute for Theoretical and Experimental Physics of the USSR State Committee on Utilization of Atomic Energy, Moscow 1971.

    Google Scholar 

  9. G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  10. B. A. Arbuzov, “Weak Interactions” and references herein, Proceedings of the 1970 CERN School of Physics, CERN 71-7.

    Google Scholar 

  11. M. Gell-Mann, M. Goldberger, N. Kroll and F. E. Low, Phys. Rev. 179, 1518 (1969).

    Article  ADS  Google Scholar 

  12. T. D. Lee and C. G. Wick, Nuclear Phys. B9, 209 (1969) B10, 1 (1969) and Phys. Rev. D2, 1033 (1970).

    MathSciNet  ADS  Google Scholar 

  13. S. Weinberg, Phys. Rev. Letts, 19, 1264 (1967); see also G. T. Hooft, “Predictions for Neutrino-Electron Cross Sections in Weinberg’s Model of Weak Interactions”, University of Utrecht preprint (1971) and B. W. Lee, “Experimental Tests of Weinberg’s Theory of Leptons,“Stony Brook preprint (1971).

    Article  ADS  Google Scholar 

  14. A. Shabalin, Soviet Journal of Nuclear Physics 9, 615 (1969).

    Google Scholar 

  15. B. L. Ioffe and E. P. Shabalin, Soviet J. of Nucl. Phys. 6, 6031 (1968).

    Google Scholar 

  16. R. Mahapatra, J. Rao and R. E. Marshak, Phys. Rev. 171, 1502 (1968).

    Article  ADS  Google Scholar 

  17. B. L. Ioffe, Soviet Physics JETP 11, 1158 (1960).

    MathSciNet  Google Scholar 

  18. R. S. Willey and J. M. Tarter, “Higher Order Terms in the Current-Current Theory of Weak Interactions”, University of Pittsburgh Preprint NYO-3829-47 (1970).

    Google Scholar 

  19. H. Primakoff, “Weak Interactions”, Proceedings of the 1970 Brandeis Summer School, MIT Press, Cambridge (1970).

    Google Scholar 

  20. J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

    Article  ADS  Google Scholar 

  21. J. D. Bjorken, Phys. Rev. 179, 1547 (1969).

    Article  ADS  Google Scholar 

  22. R. P. Feynman, Phys. Rev. Letts, 23, 1415 (1969).

    Article  ADS  Google Scholar 

  23. J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).

    Article  ADS  Google Scholar 

  24. E. Bloom, et al., Phys. Rev. Letts. 23, 930 (1969).

    Article  ADS  Google Scholar 

  25. T. D. Lee, “Scaling Properties in Inelastic Electron Scattering with a Fixed Final Multiplicity”, Columbia University preprint.

    Google Scholar 

  26. A. Pais and S. Treiman, Phys. Rev. 176, 1974 (1968).

    Article  ADS  Google Scholar 

  27. S. K. Singh and L. Wolfenstein, Nucl. Phys. B24, 77 (1970).

    Article  ADS  Google Scholar 

  28. D. Cline, “The Experimental Search for Weak Neutral Currents”, Proceedings of the 1967 Herceg Novi Summer School.

    Google Scholar 

  29. A. R. Clark, et al., Phys. Rev. Letts. 26, 1667 (1971).

    Article  ADS  Google Scholar 

  30. B. V. Geshkenbein and B. L. Ioffe, Soviet J. of Nucl. Phys. 12, 552 (1971).

    Google Scholar 

  31. S. Glashow, H. J. Schnitzler and S. Weinberg, Phys. Rev. Letts. 19, 205 (1967).

    Article  ADS  Google Scholar 

  32. There are presently at least 15 proposals for experiments at NAL to search for charged intermediate vector bosons.

    Google Scholar 

  33. See, for example, NAL proposal E1A.

    Google Scholar 

  34. D. Cline, A. K. Mann and C. Rubbia, Phys. Rev. Letts. 25, 1309 (1970).

    Article  ADS  Google Scholar 

  35. L. Lederman and Pope, Columbia University preprint.

    Google Scholar 

  36. T. D. Lee, Phys. Rev. Letts. 25, 1144 (1970); see also M. S. Turner and B. C. Barish, California Tech. preprint 68–331.

    Article  ADS  Google Scholar 

  37. R. Gatto, “Theoretical Aspects of Colliding Beam Experiments”, Proceedings of the International Symposium on Electron and photon Interactions at High Energy held at Hamburg, 1965, Vol. I, p. 106.

    Google Scholar 

  38. D. Cline, A. K. Mann and D. D. Reeder, “Search for Forbidden Angular Configurations in the Reaction \(\textup{e}^{+}\textup{e}^{-}\rightarrow \mu^{+}\mu^{-1}\), proposal submitted to SLAC for SPEAR, SPEAR proposal #7.

    Google Scholar 

  39. For example in the Wisconsin-CERN NAL experiment E28.

    Google Scholar 

  40. W. Czyz, G. C. Sheppey and J. D. Walecka, Nuovo Cimento 34, 404 (1964); K. Fujikawa, Thesis at Princeton, 1970 and LøVeth and Radomski, Stanford preprint, 1971.

    Article  Google Scholar 

  41. This is my best guess based on the expected ratio of \(\nu_{\mu}\) to \(\nu_{\textup{e}}\) and the cross section for \(\nu_{\textup{e}}+\textup{N}\rightarrow \textup{e}^{-} +\textup{N}\) which will provide a serious background.

    Google Scholar 

  42. C. H. Albright, Phys. Rev. D2, 1271 (1970).

    Google Scholar 

  43. B. Ya Zel’dovich and M. V. Terent’ev, Soviet J. of Nucl. Phys. 7, 650 (1968).

    Google Scholar 

  44. J. D. Bjorken, private communication.

    Google Scholar 

  45. D. Ljung, “Experimental Search for Rare K+ Decay Modes”, thesis, University of Wisconsin (1972).

    Google Scholar 

  46. J. Bernstein and T. D. Lee, Phys. Rev. 136, B1787 (1964).

    Article  Google Scholar 

  47. This process is currently being searched for down to the level of \(\sim\ 2\ \times\ 10^{-7}\) by the Hawaii-Wisconsin Collaboration. The best limit from this experiment so far is \(7.5\ \times\ 10^{-7}\) at the 90% confidence level, D. Clarke, private communication.

    Google Scholar 

  48. L. Lederman, “Large Q2 Experiments at Isabelle”, BNL report CRISP 71-29, Isabelle project (1971).

    Google Scholar 

  49. E8 — Wisconsin — Michigan Collaboration on a Neutral Hyperon Beam.

    Google Scholar 

  50. R. H. March, “How to Find (or Unfind) \(\equiv^{\textup{o}} \rightarrow \textup{p}\pi^{-1}\), private communication.

    Google Scholar 

  51. T. D. Lee and C. N. Yang, Phys. Rev. 126, 2239 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. J. H. Klems, R. W. Hildebrand and R. Stiening, Phys. Rev. Letters 24, 1086 (1970).

    Article  ADS  Google Scholar 

  53. A. Pais, Annals of Physics 63, 361 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Cline, D. (1973). Prospects for the Detection of Higher Order Weak Processes and the Study of Weak Interactions at High Energy. In: Iverson, G., Perlmutter, A., Mintz, S. (eds) Fundamental Interactions in Physics and Astrophysics. Studies in the Natural Sciences, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4586-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4586-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4588-6

  • Online ISBN: 978-1-4613-4586-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics