Skip to main content

Electron Spin Relaxation through Matrix NMR in Dilute Magnetic Alloys

  • Chapter
Low Temperature Physics-LT 13
  • 16 Accesses

Abstract

Since the discovery of the Kondo effect a large number of experimental works have advanced the understanding of the static magnetic properties of dilute alloys of d elements in noble metal matrices.† The situation regarding dynamic susceptibilities is quite different. Due to the so-called “bottleneck” of relaxation,3 direct EPR measurements seem to be unable to distinguish the relaxation effects associated with the s-d coupling.4 Relaxation effects are also involved in Mössbauer spectra,5 but these are still difficult to understand. The host nuclear spins sense both static and fluctuating local fields associated with the impurity. This has long been known to yield a broadening of the host NMR line, while the nuclear spin—lattice relaxation timeT 1 is shortened.6,7 Though data on the impurity contribution to T 1 −1 are available in dilute alloys,9–14 no real understanding has yet been achieved.

Associated with CNRS.

See Ref. 1 for theoretical review, Ref. 2 for experimental review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Kondo, in Solid State Physics, Vol. 23, F. Seitz, D. Turnbull, and H. Ehrenreich, eds., Academic Press, New York (1969).

    Google Scholar 

  2. A. J. Heeger, in Solid State Physics, Vol. 23, F. Seitz, D. Turnbull, and H. Ehrenreich, eds., Academic Press, New York (1969).

    Google Scholar 

  3. H. Hasegawa, Prog. Theor. Phys. 21, 483 (1959).

    Article  ADS  Google Scholar 

  4. S. Schultz, M.S. Shanabarger, and P.M. Platzman, Phys. Rev. Lett. 19, 749 (1967); P. Monod and S. Schultz, Phys. Rev. 173, 645 (1968).

    Article  ADS  Google Scholar 

  5. H. Maletta, K.R.P.M. Rao, and I. Nowik, Z. Physik 235, 59 (1970).

    Article  Google Scholar 

  6. J. Owen, M. Brown, W.D. Knight, and C. Kittel, Phys. Rev. 102, 1501 (1956).

    Article  ADS  Google Scholar 

  7. T. Sugawara, J. Phys. Soc. Japan 14, 643 (1959).

    Article  ADS  Google Scholar 

  8. J.J. Lowe and D. Tse, Phys. Rev. 166, 279 (1968).

    Article  ADS  Google Scholar 

  9. R.E. Levine, Phys. Lett. 28A, 504 (1969).

    Article  Google Scholar 

  10. O.J. Lumpkin, Phys. Rev. 164, 324 (1967).

    Article  ADS  Google Scholar 

  11. G. Gladstone, J. Appl. Phys. 41, 1150 (1970).

    Article  ADS  Google Scholar 

  12. P. Bernier, H. Launois, and H. Alloul, J. Phys. (Paris) 32 (CI), 513 (1971).

    Google Scholar 

  13. J.E. Potts and L.B. Welsh, Phys. Rev.B 5, 3421 (1972).

    Article  ADS  Google Scholar 

  14. M. Hanabusa and T. Kushida, Phys. Rev. B 5, 3751 (1972).

    Article  ADS  Google Scholar 

  15. D. Tse and S.R. Hartmann, Phys. Rev. Lett. 21, 511 (1968).

    Article  ADS  Google Scholar 

  16. P. Bernier and H. Alloul, J. Phys. F. Metals 3, 869 (1973).

    Article  ADS  Google Scholar 

  17. D.C. Golibersuch and A.J. Heeger, Phys. Rev. 182, 584 (1969); Sol. St. Comm. 8, 17 (1970).

    Article  ADS  Google Scholar 

  18. J.L. Tholence and R. Tournier, Phys. Rev. Lett. 25, 867 (1970).

    Article  ADS  Google Scholar 

  19. H. Alloul and P. Bernier, J. Phys. F. Metals 2, LI (1972).

    Article  ADS  Google Scholar 

  20. H. Alloul and P. Bernier, (to be published in J. Phys. F. Metals).

    Google Scholar 

  21. A. Narath and A. C. Gossard, Phys. Rev. 183, 391 (1969).

    Article  ADS  Google Scholar 

  22. H. Alloul, P. Bernier, H. Launois, and J.P. Pouget, J. Phys. Soc. Japan 30, 101 (1971).

    Article  ADS  Google Scholar 

  23. B. Giovannini, P. Pincus, G. Gladstone, and A.J. Heeger, J. Phys. (Paris) 32(C1), 163 (1971).

    Google Scholar 

  24. R.E. Behringer, J. Phys. Chem. Sol. 2, 209 (1957).

    Article  ADS  Google Scholar 

  25. W. Göetze and P. Wölfle, J. Low Temp. Phys. 6, 455 (1972).

    Article  ADS  Google Scholar 

  26. M.R. Shanabarger, private communication.

    Google Scholar 

  27. M.R. MacHenry, B.G. Silbernagel, and J.H. Wernick, Phys. Rev. B 5, 2958 (1972).

    Article  ADS  Google Scholar 

  28. K. Kume, K. Mizuno, S. Kazama, and Y. Nakamura, J. Phys. Soc. Japan 27, 508 (1969).

    Article  ADS  Google Scholar 

  29. A. Narath and H.T. Weaver, Phys. Rev. Lett. 23, 233 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Alloul, H., Bernier, P. (1974). Electron Spin Relaxation through Matrix NMR in Dilute Magnetic Alloys. In: Timmerhaus, K.D., O’Sullivan, W.J., Hammel, E.F. (eds) Low Temperature Physics-LT 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4520-6_71

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4520-6_71

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4522-0

  • Online ISBN: 978-1-4613-4520-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics