Skip to main content

Afferent Input: A Critical Factor in the Ontogenesis of Brain Electrical Activity

  • Chapter
Behavior and Brain Electrical Activity

Abstract

The existence of critical periods in the ontogenesis of behavior, such as that associated with imprinting (Sluckin 1972), has been well-documented in recent years in morphologic, cytochemical, and electrophysiologic studies of the developing nervous system. Behavioral scientists have suggested that ontogenetic criticality can be understood if growth and behavioral differentiations are based on organizing processes and if organization can be modified only when active processes of organization are in progress (Scott 1962).

Partially supported by the Blue Bird Research Foundation, The Playtex Foundation (1955), and The Cannafax Fund of The Methodist Hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajmone Marsan, C. 1961. Electrographic aspects of “epileptic” neuronal aggregates. Epilepsia 2:22.

    Article  Google Scholar 

  • Ashton, N., Ward, B., and Serpel, G. 1953. Role of oxygen in the genesis of retrolental fibroplasia: a preliminary report. Br. J. Ophthalmol. 37:513.

    Article  PubMed  CAS  Google Scholar 

  • Baker, F.H., Grigg, P., and von Noorden, G.K. 1974. Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Res. 66:185.

    Article  Google Scholar 

  • Barlow, H.B., Blakemore, C., and Pettigrew, J.D. 1967. The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193:327.

    CAS  Google Scholar 

  • Barlow, H.B., and Pettigrew, J.D. 1971. Lack of specificity of neurones in the visual cortex of young kittens. J. Physiol. (Lond.) 218:98P.

    Google Scholar 

  • Baxter, B.L. 1966. Effect of visual deprivation during postnatal maturation on the electroencephalogram of the cat. Exp. Neurol. 14:224.

    Article  PubMed  CAS  Google Scholar 

  • Berger, H. 1900. Experimentell-anatomische Studien über die durch den Mangel optischer Reize veranlaBten Entwicklungshemmungen im Occipitallappen des Hundes und der Katze. Arch. Psychiatr. Nervenkr. 33:521.

    Article  Google Scholar 

  • Bishop, P.O., Henry, G.H., and Smith, C.J. 1971. Binocular interaction fields of single units in the cat striate cortex. J. Physiol. (Lond.) 216:39.

    CAS  Google Scholar 

  • Blakemore, C., and Cooper, G.F. 1970. Development of the brain depends on the visual environment. Nature (Lond.) 228:477.

    Article  CAS  Google Scholar 

  • Blakemore, C., and Mitchell, D.E. 1973. Modification by very brief exposure to the visual environment. Nature (Lond.) 241:467.

    Article  CAS  Google Scholar 

  • Campbell, K. 1951. Intensive oxygen therapy as a possible cause of retrolental fibroplasia: a clinical approach. Med. J. Aust. 2:48.

    PubMed  CAS  Google Scholar 

  • Cannon, W.B., and Rosenblueth, A. 1949. The Supersensitivity of Denervated Structures. New York: Macmillan.

    Google Scholar 

  • Cohen, J., Boshes, L.D., and Snider, R.S. 1961. Electroencephalographic changes following retrolental fibroplasia. Electroencephalogr. Clin. Neurophysiol. 13:914.

    Article  Google Scholar 

  • Coleman, P.D., and Riesen, A.H. 1968. Environmental effects on cortical dendritic fields. I. Rearing in the dark. J. Anat. 102:363.

    PubMed  CAS  Google Scholar 

  • Conel, J.L. 1939. The Postnatal Development of the Human Cerebral Cortex, vol. I. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Conel, J.L. 1941. The Postnatal Development of the Human Cerebral Cortex, vol. II. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Conel, J.L. 1947. The Postnatal Development of the Human Cerebral Cortex, vol. III. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Cook, W.H., Walker, J.H., and Barr, M.L. 1951. A cytological study of transneuronal atrophy in the cat and rabbit. J. Comp. Neurol. 94:267.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, B.G. 1971. The fate of axon terminals in visual cortex during transsynapticatrophy of the lateral geniculate nucleus. Brain Res. 34:53.

    Article  PubMed  CAS  Google Scholar 

  • Detwiler, S.R. 1936. Neuro embryology: An Experimental Study. New York: Macmillan.

    Google Scholar 

  • Dews, P.B., and Wiesel, T.N. 1970. Consequences of monocular deprivation on visual behaviour in kittens. J. Physiol. (Lond.) 206:437.

    CAS  Google Scholar 

  • Dichter, M., and Spencer, W.A. 1969. Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J. Neurophysiol. 32:663.

    PubMed  CAS  Google Scholar 

  • Doty, R.W. 1970. Modulation of visual input by brain-stem systems. In F.A. Young, and D.B. Lindsley (eds.), Early Experience and Visual Information Processing in Perceptual and Reading Disorders, p. 143. Washington, D.C: National Academy of Sciences.

    Google Scholar 

  • Echlin, F.A. 1959. The supersensitivity of chronically “isolated” cerebral cortex as a mechanism in focal epilepsy. Electroencephalogr. Clin. Neurophysiol. 11:697.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, D.A. 1971. Congenital and perinatal sensory deprivation: Some studies in early development. Am. J. Psychiatry 127:1539.

    PubMed  CAS  Google Scholar 

  • Freedman, R.D., Mitchell, D.E., and Millodot, M. 1972. A neural effect of partial visual deprivation in humans. Science 175:1384.

    Article  Google Scholar 

  • Ganz, L., Fitch, M., and Satterberg, J.A. 1968. The selective effect of visual deprivation on receptive field shape determined neurophysiologically. Exp. Neurol 22:614.

    Article  PubMed  CAS  Google Scholar 

  • Gary, L.J., and Powell, T.P.S. 1971. An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey. Proc. R. Soc. Lond. [Biol] 179:41.

    Article  Google Scholar 

  • Gibbs, E.L., Fois, A., and Gibbs, F.A. 1955. The electroencephalogram in retrolental fibro-plasia. N Engl. J. Med. 253:1102.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, F.A., and Gibbs, E.L. 1952. Atlas of Electroencephalography, Vol. 2, Epilepsy, p. 223. Cambridge, Mass.: Addison-Wesley Press.

    Google Scholar 

  • Glees, P. 1961. Terminal degeneration and trans-synaptic atrophy in the lateral geniculate body of the monkey. In R. Jung and H. Kornhuber (eds.), The Visual System: Neurophysiology and Psychophysics, p. 104. Berlin: Springer-Verlag.

    Google Scholar 

  • Globus, A., and Scheibel, A.B. 1967. The effect of visual deprivation on cortical neurons—a Golgi study. Exp. Neurol. 19:331.

    Article  PubMed  CAS  Google Scholar 

  • Goldensohn, E.S., and Purpura, D.P. 1963. Intracellular potentials of cortical neurons during focal epileptogenic discharges. Science 139:840.

    Article  PubMed  CAS  Google Scholar 

  • Goldensohn, E.S., Zablow, L., and Stein, B. 1970. Interrelationships of form and latency of spike discharge from small areas of human cortex. Electroencephalogr. Clin. Neurophysiol. 29:321.

    Article  PubMed  CAS  Google Scholar 

  • Guillery, R.W. 1972. Binocular competition in the control of geniculate cell growth. J. Comp. Neurol. 144:117.

    Article  PubMed  CAS  Google Scholar 

  • Guillery, R.W., and Stelzner, D.J. 1970. The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol. 139:413.

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten, L.J., and Hellstrom, B.E. 1952. Retrolental fibroplasia: Animal experiments. Effect of intermittently administered oxygen and postnatal development of eyes of fullterm mice. Acta Paediatr. 41:577.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, H.F., Harlow, M.K., and Suomi, S.J. 1971. From thought to therapy: Lessons from a primate laboratory. Am. Sci. 59:538.

    PubMed  CAS  Google Scholar 

  • Hebb, D.O. 1949. The Organization of Behavior: A Neuropsychological Theory. New York: John Wiley & Sons.

    Google Scholar 

  • Hirsch, H.V.B. 1972. Visual perception in cats after environmental surgery. Exp. Brain Res. 15:405.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, H.V.B., and Spinelli, D.N. 1970. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168:869.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, H.V.B., and Spinelli, D.N. 1971. Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp. Brain Res. 13:509.

    Google Scholar 

  • Horn, G., Rose, S.P.R., and Bateson, P.P.G. 1973. Experience and plasticity in the central nervous system. Science 181:506.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. 1963. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26:994.

    PubMed  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. 1965. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28:1041.

    PubMed  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206:419.

    CAS  Google Scholar 

  • Hyden, H. 1943. Protein metabolism in the nerve cell during growth and function. Acta Physiol. Scand. 6(Suppl. 17):3.

    Google Scholar 

  • Jacobson, M. 1970. Developmental Neurobiology. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Kasamatsu, T., and Adey, W.R. 1974a. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. I. Tonic excitability changes. Exp. Brain Res. 20:157.

    CAS  Google Scholar 

  • Kasamatsu, T., and Adey, W.R. 1974b. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. II. Rhythmic EEG burst and PGO waves. Exp. Brain Res. 20:171.

    CAS  Google Scholar 

  • Kellaway, P., Bloxsom, A., and MacGregor, M. 1955. Occipital spike foci associated with retrolental fibroplasia and other forms of retinal loss in children. Electroencephalogr. Clin. Neurophysiol. 7:469.

    Google Scholar 

  • Kupfer, C., and Palmer, P. 1964. Lateral geniculate nucleus: Histological and cytochemical changes following afferent denervation and visual deprivation. Exp. Neurol. 9:400.

    Article  PubMed  CAS  Google Scholar 

  • Marr, D. 1970. A theory of cerebral neocortex. Proc. R. Soc. Lond. [Biol] 176:161.

    Article  CAS  Google Scholar 

  • Mason, W.A., Davenport, R.K., Jr., and Menzel, E.W., Jr. 1968. Early experience and the social development of rhesus monkeys and chimpanzees. In G. Newton, and S. Levine (eds.), Early Experience and Behavior, p. 1. Springfield, III.: Charles C Thomas.

    Google Scholar 

  • Matsumoto, H., Ayala, G.F., and Gumnit, R.J. 1969. Neuronal behavior and triggering mechanisms in cortical epileptic focus. J. Neurophysiol. 32:688.

    PubMed  CAS  Google Scholar 

  • Matthews, M.R. 1964. Further observations on transneuronal degeneration in the lateral geniculate nucleus of the macaque monkey. J. Anat. 98:255.

    PubMed  CAS  Google Scholar 

  • Matthews, M.R., Cowan, W.M., and Powell, T.P.S. 1960. Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey. J. Anat. 94:145.

    PubMed  CAS  Google Scholar 

  • Nikara, T., Bishop, P.O., and Pettigrew, J.D. 1968. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res. 6:353.

    Article  PubMed  CAS  Google Scholar 

  • Owens, W.C, and Owens, E.U. 1949. Retrolental fibroplasia in premature infants. Am. J. Ophthalmol. 32:1.

    PubMed  CAS  Google Scholar 

  • Patz, A., Hoeck, L.E., and DeLaCruz, E. 1952. Studies of the effect of high oxygen administration in retrolental fibroplasia. Am. J. Ophthalmol. 35:1248.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J.D., Nikara, T., and Bishop, P.O. 1968. Binocular interaction on single units in the cat striate cortex: Simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp. Brain Res. 6:391.

    PubMed  CAS  Google Scholar 

  • Prince, D.A. 1968. The depolarization shift in “epileptic” neurons. Exp. Neurol. 21:467.

    Article  PubMed  CAS  Google Scholar 

  • Purpura, D.P. 1964. Relationship of seizure susceptibility to morphologic and physiologic properties of normal and abnormal immature cortex. In P. Kellaway, and I. Petersen (eds.), Neurological and Electroencephalographic Correlative Studies in Infancy, p. 117. New York: Grune & Stratton.

    Google Scholar 

  • Purpura, D.P., and Housepian, E.M. 1961. Morphological and physiological properties of chronically isolated immature cortex. Exp. Neurol. 4:377.

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S. 1959. Degeneration and Regeneration of the Nervous System. New York: Hafner.

    Google Scholar 

  • Rayport, M. 1968. The Jacksonian hypothesis: An appraisal in the light of single unit recording in focal epileptogenic gray matter in man. Proc. Rudolph Virchow Med. Soc. City N.Y. Suppl. 26:301.

    Google Scholar 

  • Rose, D., and Blakemore, C. 1974. An analysis of orientation selectivity in the cat’s visual cortex. Exp. Brain Res. 20:1.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura, H., and Doty, R.W. 1969. Bizarre EEG of striate cortex in blind squirrel monkeys. Electroencephalogr. Clin. Neurophysiol. 27:734.

    Google Scholar 

  • Schmidt, R.P., Thomas, L.B., and Ward, A.A., Jr. 1959. The hyperactive neuron. Microelectrode studies of chronic epileptic foci in monkey. J. Neurophysiol. 22:285.

    PubMed  CAS  Google Scholar 

  • Scott, J.P. 1962. Critical periods in behavioral development. Science 138:949.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.S., and Kellaway, P. 1958. Epilepsy of focal origin in childhood. Med. Clin. North Am. 42:415.

    PubMed  CAS  Google Scholar 

  • Sharpless, S.K. 1969. Isolated and deafferented neurons: Disuse supersensitivity. In H.H. Jasper, A.A. Ward, Jr., and A. Pope (eds.), Basic Mechanisms of the Epilepsies, p. 329. Boston: Little, Brown.

    Google Scholar 

  • Shlaer, R. 1971. Shift in binocular disparity causes compensatory change in the cortical structure of kittens. Science 173:638.

    Article  PubMed  CAS  Google Scholar 

  • Sluckin, W. 1972. Imprinting and Early Learning, 2nd. ed. London: Methuen.

    Google Scholar 

  • Smith, J.M.B., and Kellaway, P. 1964a. The natural history and clinical correlates of occipital foci in children. In P. Kellaway, and I. Petersen (eds.), Neurological and Electroencephalographic Correlative Studies in Infancy, p. 230. New York: Grune & Stratton.

    Google Scholar 

  • Smith, J.M.B., and Kellaway, P. 1964b. Central (Rolandic) foci in children: an analysis of 200 cases. Electroencephalogr. Clin. Neurophysiol. 17:460.

    Google Scholar 

  • Stillerman, M.L., Gibbs, E.L., and Perlstein, M.A. 1952. Electroencephalographic changes in strabismus. Am. J. Ophthalmol. 35:54.

    PubMed  CAS  Google Scholar 

  • Valverde, F. 1967. Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res. 3:337.

    Article  PubMed  CAS  Google Scholar 

  • Valverde, F. 1968. Structural changes in the area striata of the mouse after enucleation. Exp. Brain Res. 5:274.

    Article  PubMed  CAS  Google Scholar 

  • Valverde, F., and Esteban, M.E. 1968. Peristriate cortex of mouse: Location and the effects of enucleation on the number of dendritic spines. Brain Res. 9:145.

    Article  PubMed  CAS  Google Scholar 

  • von Gudden, B. 1869. Experimentaluntersuchungen über das peripherische und zentrale Nervensystem. Arch. Psychiatry. 2:693.

    Article  Google Scholar 

  • von Noorden, G.K. 1973a. Experimental amblyopia in monkeys. Further behavioral observations and clinical correlations. Invest. Ophthalmol. 12:721.

    Google Scholar 

  • von Noorden, G.K. 1973b. Histological studies of the visual system in monkeys with experimental amblyopia. Invest. Ophthalmol. 12:727.

    Google Scholar 

  • von Noorden, G.K., and Dowling, J.E. 1970. Experimental amblyopia in monkeys. II. Behavioral studies in strabismic amblyopia. Arch. Ophthalmol. 84:215.

    Google Scholar 

  • von Senden, M. 1960. Space and Sight. The Perception of Space and Shape in the Congenitally Blind Before and After Operation. Glencoe, III.: The Free Press.

    Google Scholar 

  • Ward, A.A., Jr. 1969. The epileptic neuron: Chronic foci in animals and in man. In H.H. Jasper, A.A. Ward, Jr., and A. Pope (eds.), Basic Mechanisms of the Epilepsies, p. 263. Boston: Little, Brown.

    Google Scholar 

  • Ward, A.A., Jr., and Schmidt, R.P. 1961. Some properties of single epileptic neurons. Arch. Neurol. 5:308.

    PubMed  Google Scholar 

  • Wiesel, T.N., and Hubel, D.H. 1963a. Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26:978.

    CAS  Google Scholar 

  • Wiesel, T.N., and Hubel, D.H. 1963b. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:1003.

    CAS  Google Scholar 

  • Wiesel, T.N., and Hubel, D.H. 1965a. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28:1029.

    CAS  Google Scholar 

  • Wiesel, T.N., and Hubel, D.H. 1965b. Extent of recovery from the effects of visual deprivation in kittens. J. Neurophysiol. 28:1060.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Kellaway, P. (1975). Afferent Input: A Critical Factor in the Ontogenesis of Brain Electrical Activity. In: Burch, N., Altshuler, H.L. (eds) Behavior and Brain Electrical Activity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4434-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4434-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4436-0

  • Online ISBN: 978-1-4613-4434-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics