Skip to main content

Transition Probabilities for Ionized Atoms

  • Chapter
Beam-Foil Spectroscopy

Abstract

The graphical analysis of systematic trends along iso-electronic sequences has proved to be an invaluable tool for organizing and evaluating f-value data [1, 2]. While formally these graphs encompass an entire sequence, the main interest up till now has really been in the moderately ionized regime, up to say 10 or 15 times ionized. The behavior of very highly ionized species has been used mainly to establish the ultimate systematic trend.

Work suppported by Energy Research and Development Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Wiese and A. W. Weiss, Phys. Rev. 175, 50 (1968).

    Article  ADS  Google Scholar 

  2. M. W. Smith and W. L. Wiese, Astrophys. J. Suppl. Ser. 23, 103 (1971).

    Article  ADS  Google Scholar 

  3. D. Layzer, Ann. Phys. (New York) 8, 271 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. D. Layzer, Int. J. Quantum Chem. 1, 45, (1967).

    Article  ADS  Google Scholar 

  5. B. Edlén, in Handbuch der Physik (Springer-Verlag, Berlin, 196U), S. Flügge, ed., Vol. 27, p. 80

    Google Scholar 

  6. B. Edlén, J. Bromander, Nucl. Instrum. Methods 110, 11 (1973).

    Article  Google Scholar 

  7. D. Layzer and J. Bahcall, Ann. Phys. (New York) 17, 177 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E. U. Condon and H. Odabasi, JILA Report No. 95 (1968).

    Google Scholar 

  9. A. W. Weiss, Nucl. Instrum. Methods 90, 121 (1970).

    Article  ADS  Google Scholar 

  10. A. W. Weiss, Phys. Rev. 188, 119 (1969).

    Article  ADS  Google Scholar 

  11. W. H. Smith, Nucl. Instrum. Methods 90, 115 (1970).

    Article  ADS  Google Scholar 

  12. J. Bromander, Phys. Scripta 4, 6l (1971).

    Google Scholar 

  13. T. Andersen, K. Jessen, and G. Sørensen, Phys. Rev. 188, 76 (1969).

    Article  ADS  Google Scholar 

  14. I. Martinson and W. S. Bickel, Phys. Lett. 31A, 25 (1970).

    ADS  Google Scholar 

  15. M. C. Buchet-Poulizac and J. P. Buchet, Phys. Scripta 8, 40 (1973).

    Article  ADS  Google Scholar 

  16. J. P. Buchet, M. C. Poulizac, and M. Carré, J. Opt. Soc. Am. 62, 623 (1971).

    Article  ADS  Google Scholar 

  17. L. Heroux, Phys. Rev. l80, 1 (1969).

    Article  Google Scholar 

  18. A. W. Weiss, in Advances in Atomic and Molecular Physics (Academic Press, New York, 1973), D. R. Bates and I. Estermann, eds., Vol. 9, p. 1.

    Google Scholar 

  19. W. B. Payne and J. S. Levinger, Phys. Rev. 101, 1020 (1956).

    Article  ADS  MATH  Google Scholar 

  20. J. H. Scofield, Phys. Rev. 179, 9 (1969)

    Article  ADS  Google Scholar 

  21. J. H. Scofield in Atomic Inner-Shell Processes (Academic Press, New York, 1975), B. Crasemann, ed., Vol. 1, p. 265.

    Google Scholar 

  22. F. A. Babushkin, Sov. Phys.--JETP 21, 372 (1965)

    ADS  Google Scholar 

  23. F. A. Babushkin Opt. Spektrosk. 19, 1 (1965).

    ADS  Google Scholar 

  24. R. H. Garstang, in Topics in Modern Physics (Colorado University Press, Boulder, 1971), W. E. Brittin and H. Odabasi, eds., p. 153.

    Google Scholar 

  25. S. M. Younger and A. W. Weiss, J. Res. Natl. Bur. Stand. (U.S.) (1975), to be published.

    Google Scholar 

  26. V. M. Burke and I. P. Grant, Proc. Phys. Soc. 90, 297 (1967).

    Article  ADS  Google Scholar 

  27. Y.-K. Kim, (private communication).

    Google Scholar 

  28. J. D. Purcell and K. G. Widing, Astrophys. J. 176, 239 (1972).

    Article  ADS  Google Scholar 

  29. R. H. Garstang and L. J. Shamey, Astrophys. J. 148, 665 (1967).

    Article  ADS  Google Scholar 

  30. O. Sinanoglu and W. Luken, Chem. Phys. Lett. 20, 407 (1973).

    Article  ADS  Google Scholar 

  31. E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, London, 1953).

    Google Scholar 

  32. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Academic Press, New York, 1957).

    MATH  Google Scholar 

  33. M. Blume and R. E. Watson, Proc. Roy. Soc. (London) A270, 127 (1963).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Weiss, A.W. (1976). Transition Probabilities for Ionized Atoms. In: Sellin, I.A., Pegg, D.J. (eds) Beam-Foil Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4340-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4340-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4342-4

  • Online ISBN: 978-1-4613-4340-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics