Skip to main content

Electronic Processes at Dislocation Cores and Crack Tips

  • Chapter
Atomistics of Fracture

Abstract

It does not seem to be possible yet to present an electronic theory of dislocation cores and crack tips in bcc transition metals which are in the center of the fracture problem. Instead the electronic aspect has become more transparent in semiconductors with diamond cubic structure which undergo a macroscopic brittle to ductile transition at about 60% of their absolute melting temperatures [1]. Interestingly enough such crystals like Si and Ge deform more easily when they are n-doped (say with lO19 cm−3 As) than in the intrinsic state, i.e., in a range of substitutional solute concentration which would not affect the brittle ductile transition of metal single crystals. This is clearly an electronic effect, not one of the size misfit of the solute, as is shown by the non-effectiveness of tetravalent solute [2]. The important parameter is the position of the Fermi level as determined by temperature and doping relative to the electronic levels (or better: one-dimensional bands of the dislocations [3]. This parameter determines the line charge of the dislocations which in turn has a large and positive) influence on dislocation mobility. One might say that the line charge destabilizes a straight dislocation which is its minimum energy configuration in the Peierls potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Alexander and P. Haasen, Dislocations and Plastic Flow in the Diamond Structure, Sol. St. Physics 22: 28 (1968)

    Google Scholar 

  2. J.R. Patel and A.P. Chaudhuri, Charged impurity Effects on the Deformation of dislocation-free Ge, Phys. Rev. 143: 60l (1966)

    Google Scholar 

  3. R. Labusch and W. Schröter, Electrical properties of dislocations in Semiconductors, in “Dislocation in Solids” Vol. 5 F.R.N. Nabarro, ed. North-Holland, Amsterdam (1980)

    Google Scholar 

  4. E.Y. Gutmanas and P. Haasen, Photoplastic Effect in CdTe Jl. de Physique 40: C6–169 (1979)

    Google Scholar 

  5. N.H. Macmillan, R.D. Huntington and A.R.C. Westwood, Relationship between £ Potential and dislocation mobility, Phil. Mag. 28: 923 (1973)

    Article  ADS  Google Scholar 

  6. P. Haasen, Kinkenbildung in geladenen Versetzungen, phys. stat. sol. (a) 28: 145 (1975) W. Schröter and P. Haasen, The Chemomechanical Effect in Semi-conductors in “Surface Effects in Crystal Plasticity”, R.M. Latanision et al ed, Nato Adv. Study Inst. Ser E17, p. 681 (1977)

    Article  ADS  Google Scholar 

  7. S. Marklund, On the core structure of Glide Set 90° and 30° Partial Dislocations in Si, phys. stat. sol. (b) lOO:77 (1980) Electron States associated with Partial dislocations in Si phys. stat. sol. (b) 92: 83 (1979)

    Article  ADS  Google Scholar 

  8. R. Jones, Theoretical Calculations of Electron States associated with Dislocations, Jl. de Physique 40: C6–33 (1979)

    Google Scholar 

  9. P.B. Hirsch, Mechanism for the effect of doping on Dislocation Mobility, Jl. de Physique 40: C6–117 (1979)

    Google Scholar 

  10. I.L.F. Ray and D.J.H. Cockayne, The dissociation of dislocations in Si, Proc. Roy. Soc. A325: 543 (1971)

    Article  ADS  Google Scholar 

  11. I.L.F. Ray and D.J.H. Cockayne, The dissociation of dislocations in Si, Proc. Roy. Soc. A325: 543 (1971)

    Article  ADS  Google Scholar 

  12. A. Bourret and C.D. Anterroches, High resolution Studies of Dislocations and Grain Boundaries, 37th Ann. Proc. Electr. Microsc. Soc. Amer., p. 388 (1979)

    Google Scholar 

  13. H.J. Möller, Structure and Energy of High Angle Grain Boundaries in Si, Phil. Mag. (1981) in press

    Google Scholar 

  14. S. Winter, Bound Electron States close to the Conduction Band in Ge due to 60° dislocations, phys stat sol. (b) 79: 637 (1977)

    Google Scholar 

  15. Internat. Symposium on Dislocations in Semiconductors, Hünfeld, Colloque 6, Jl. de Phys. 40: C6 (1979)

    Google Scholar 

  16. R. Labusch and W. Schröter, Electrical and Optical properties of dislocations in semiconductors, Inst. Phys. Conf. Ser. 23: 56 (1975)

    Google Scholar 

  17. W.T. Read, Jr., Theory of Dislocations in Ge, Phil. Mag. 45: 775 (1954)

    MATH  Google Scholar 

  18. R. Wagner and P. Haasen, Electronic States at Screw Dislocations in Ge, Inst. Phys. Conf. Ser. 23: 387 (1975)

    Google Scholar 

  19. W. Schröter, E. Scheibe and H. Schön, Energy Spectra in Si and Ge, Jl. of Microsc. 118:23 (1980); also W. Schröter, to be published

    Article  Google Scholar 

  20. H. Schaumburg and F. Willmann, Optical Absorption of Plastically Deformed Ge, Phys. stat. sol. (a) 34: K 173 (1976)

    Article  ADS  Google Scholar 

  21. D. Gwinner and R. Labusch, Luminescence of Screw dislocations in Si, to be published

    Google Scholar 

  22. D. Mergel and R. Labusch, Optical Excitation of Dislocation States in Ge, Phys. stat. sol. (a) 41: 431, 42: 165 (1977)

    Article  Google Scholar 

  23. J.R. Patel and L.C. Kimerling, Dislocation Defect States in Si, Jl. de Physique 40: C6–67 (1979)

    Google Scholar 

  24. S. Mantovani and E. Mazzega, Dislocation Electronic states from Schottky diodes in Si, Jl. de Phys. 40: C6–63 (1979)

    Google Scholar 

  25. V.A. Grazhulis, Application of EPR and electrical measurements to study dislocation energy spectrum in Si, Jl. de Phys. 40: C6–69 (1979)

    Google Scholar 

  26. V.A. Grazhulis, V.V. Kveder and V. Yu. Mukhina, Investigation of the Energy Spectrum in dislocated Si, Phys. stat. sol. (a) 44: 107 (1977)

    Article  ADS  Google Scholar 

  27. V.V. Rybin and A.N. Orlov, Theory of dislocation mobility in the low velocity range, Sov. Phys. Sol. St. 11: 2635 (1970)

    Google Scholar 

  28. G. Packeiser, On the Correlation of Constrictions with jogs in dissociated dislocations in Ge, Phil. Mag. 41: 459 (1980)

    Article  Google Scholar 

  29. H. Ohori and K. Sumino, Internal Friction in deformed Ge crystals at low temperatures, phys. stat. sol. (a) 14: 489 (1972)

    ADS  Google Scholar 

  30. H.J. Moller, Statistics of kink formation on dissociated dislocations; Jl. de Phys. 40: C6–123 (1979)

    Google Scholar 

  31. E. Weber and H. Alexander, EPR of dislocations in Si, Jl. de Physique 40: C6–l0l

    Google Scholar 

  32. J. Friedel, Dislocations, Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  33. R. Jones, Structure of kinks on 90° partials in Si and a strained bond model for dislocation motion, Phil. Mag. 42: 213 (1980)

    Article  Google Scholar 

  34. J.E. Sinclair, Influence of interatomic force law and kinks on the propagation of brittle cracks, Phil. Mag. 31: 647 (1975)

    Article  ADS  Google Scholar 

  35. J. Rice and R. Thomson, Ductile vs. brittle behaviour of crystals, Phil. Mag. 29: 73 (1974)

    Article  ADS  Google Scholar 

  36. W.R. Tyson, Atomistic Simulation of the Ductile-Brittle Transition, in “Fracture 1977”, 2a:159, ed. Taplin Pergamon, Oxford (1977)

    Google Scholar 

  37. C. St. John, The brittle-ductile transition in pre-cleaved Si single crystals, Phil. Mag. 32: 1193 (1975)

    Article  Google Scholar 

  38. G. Michot, K. Badawi, A.R. ABD el Halim and A. George, Observation par Topographie aux Rayons X des Configurations de Dislocations developees a l’extremite d’une fissure dans le Si, Phil. Mag. to be published

    Google Scholar 

  39. A. R. Rosenfield and G.T. Hahn, Linear arrays of Moving dislocations emitted by a Source, in “Dislocation Dynamics”, A.R. Rosenfield et al ed. McGraw Hill, New York (1968) p. 255

    Google Scholar 

  40. S. Kobayashi and S.M. Ohr, In situ fracture experiments in bcc metals, Phil. Mag. 42: 763 (1980)

    Google Scholar 

  41. B.A. Bilby, A.H. Cottrell and K.H. Swinden, The Spread of Plastic Yield from a notch, Proc. Roy. Soc. 272A: 304 (1963)

    Article  ADS  Google Scholar 

  42. M.L. Jokl, V. Vitek and C.J. McMahon, A microscopic theory of brittle fracture in deformable solids, Acta Met. 28: 1479 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Haasen, P. (1983). Electronic Processes at Dislocation Cores and Crack Tips. In: Latanision, R.M., Pickens, J.R. (eds) Atomistics of Fracture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3500-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3500-9_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3502-3

  • Online ISBN: 978-1-4613-3500-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics