Skip to main content

Alkaline Hydrolysis in Micellar Sodium Dodecyl Sulfate; The “Binding” of −OH to Anionic Micelles

  • Chapter
Solution Behavior of Surfactants

Abstract

Micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS) markedly decrease the rate of alkaline hydrolysis of substrates such as N-alkyl-4-cyanopyridinium ions and p-nitrophenyl alkanoates. For the lower homologs, the magnitude of the rate decrease is a sensitive function of the length of the alkyl chain of the substrate. However, the observed rates of alkaline hydrolysis for the higher homologs converge to a limiting value which is virtually independent of further increase in the alkyl chain length or of the SDS concentration. In this limit of essentially complete substrate incorporation, the observed rate constants for alkaline hydrolysis are directly proportional to the concentration of added NaCl and are nearly second-order with respect to added NaOH in the absence of buffer. These results, which demonstrate that the intrinsic second-order rate constant for alkaline hydrolysis in the micellar pseudophase of SDS is not zero, can be analyzed in terms of the free sodium ion concentration dependence of the local “pH” at the SDS micellar surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. This is paper 6 of the series Ion Exchange in Micellar Solutions.

    Google Scholar 

  2. F.M. Menger and C.E. Portnoy, J. Amer. Chem. Soc., 89, 4698 (1967).

    Article  Google Scholar 

  3. E.J. Fendler, R.P. Liechti and J.H. Fendler, J. Org. Chem., 35, 1658 (1970).

    Article  Google Scholar 

  4. G.J. Buist, C.A. Bunton, L. Robinson, L. Sepúlveda and M.Stam, J. Amer. Chem. Soc., 92, 4072 (1970).

    Article  Google Scholar 

  5. J.L. Kurz, J. Phys. Chem., 66, 2239 (1962).

    Article  Google Scholar 

  6. C.A. Bunton and L. Robinson, J. Phys. Chem., 74, 1062 (1970).

    Article  Google Scholar 

  7. P. Mukerjee and K. Banerjee, J. Phys. Chem., 68, 3567 (1964).

    Article  Google Scholar 

  8. M.S. Fernandez and P. Fromhertz, J. Phys. Chem., 81, 1755 (1977).

    Article  Google Scholar 

  9. C.A. Bunton and L. Robinson, J. Org. Chem., 34, 773 (1969).

    Article  Google Scholar 

  10. I.M. Cuccovia, E.H. Schröter, R.C. de Baptista and H. Chaimovich, J. Org. Chem., 42, 3400 (1977).

    Article  Google Scholar 

  11. M.T.A. Behme, J. G. Fullington, R. Noel and E.H. Cordes, J. Amer. Chem. Soc., 87, 266 (1965).

    Article  Google Scholar 

  12. E.F.J. Duynstee and E. Grunwald, Tetrahedron, 21, 2401 (1965).

    Article  Google Scholar 

  13. H. Nogami, S.Awazu, Y. Kanakubo, Chem. Pharm. Bull., 11, 13 (1963).

    Google Scholar 

  14. H. Nogami, S. Awazu and M. Iwatsura, Chem. Pharm. Bull., 81 1251 (1963).

    Google Scholar 

  15. C.A. Bunton, L. Robinson and L. Sepúlveda, J. Amer. Chem. Soc., 91, 4813 (1969).

    Article  Google Scholar 

  16. C.N. Sukenik, B. Weisman and R.G. Bergman, J. Amer. Chem. Soc., 97, 445 (1975).

    Article  Google Scholar 

  17. J.K. Landquist, J. Chem. Soc. Perkin I, 454 (1976).

    Google Scholar 

  18. F.H. Quina, Tese de Livre-Docência, Instituto de Quimica, Universidade de São Paulo (1977).

    Google Scholar 

  19. M. Politi, I.M. Cuccovia, H. Chaimovich, M.L.C, de Almeida, J.B.S. Bonilha and F.H. Quina, Tetrahedron Lett., 115 (1978).

    Google Scholar 

  20. F.H. Quina, M.J. Politi, I.M. Cuccovia, E. Baumgarten, S.M. Martins-Franchetti and H. Chaimovich, J. Phys. Chem., 80, 361 (1980).

    Article  Google Scholar 

  21. E.M. Kosower and J.W. Patton, Tetrahedron, 22, 2081 (1966).

    Article  Google Scholar 

  22. H. Chaimovich, M.J. Politi, J.B.S. Bonilha and F.H. Quina, J. Phys. Chem., 83, 1951 (1979).

    Article  Google Scholar 

  23. H. Chaimovich, R.M.V. Aleixo, I.M. Cuccovia, D. Zanette and F.H. Quina. In “Solution Behaviour of Surfactants - Theoretical and Applied Aspects”, K.L. Mittal and E.J. Fendler, Eds. Plenum Press, New York (1981).

    Google Scholar 

  24. J. Th. G. Overbeek and D. Stigter, Ree. Trav. Chim., 75, 1263 (1956).

    Article  Google Scholar 

  25. E.K. Rideal, Proc. Roy. Soc. (London) A209, 431 (1951); J.T. Davies and E.K. Rideal, ibid. A194, 417 (1948).

    Google Scholar 

  26. F.H. Quina and H. Chaimovich, J. Phys. Chem., 83, 1844 (1979).

    Article  Google Scholar 

  27. L.S.Romsted, Ph.D. Thesis, Indiana University, Bloomington (1975).

    Google Scholar 

  28. K.Shinoda and T. Soda, J. Phys. Chem., 67, 2072 (1963); P. Mukerjee, ibid., 66, 1733 (1962).

    Google Scholar 

  29. P.Mukerjee, J. Phys. Chem., 66, 943 (1962).

    Article  Google Scholar 

  30. C.A.Bunton, K. Ohmenzetter and L. Sepúlveda, J. Phys. Chem., 81, 2000 (1977).

    Google Scholar 

  31. C.A.Bunton and L.S. Romsted, in “The Chemistry of Functional Groups”, Supplement B: “The Chemistry of Acid Derivatives”, Part 2, S. Patai, Ed. Wiley, New York (1979), p. 945.

    Google Scholar 

  32. Guthrie, J.P., Can. J. Chem., 51, 3494 (1973).

    Article  Google Scholar 

  33. I.M. Cuccovia, Tese de Doutoramento, Instituto de Quimica, Universidade de São Paulo (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Quina, F.H., Politi, M.J., Cuccovia, I.M., Martins-Franchetti, S.M., Chaimovich, H. (1982). Alkaline Hydrolysis in Micellar Sodium Dodecyl Sulfate; The “Binding” of −OH to Anionic Micelles. In: Mittal, K.L., Fendler, E.J. (eds) Solution Behavior of Surfactants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3494-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3494-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3496-5

  • Online ISBN: 978-1-4613-3494-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics