Skip to main content

Depurination of DNA as a Possible Mutagenic Pathway for Cells

  • Chapter
Molecular and Cellular Mechanisms of Mutagenesis

Summary

The possible consequences of depurination for both spontaneous and induced mutagenesis were investigated using in vitro and in vivo assays. Depurination of synthetic polynucleotide templates such as poly[d(A-T))] or poly[d(G-C)] leads to increased misincorporation of noncomplementary nucleotides when these templates are copied by prokaryotic and eukaryotic DNA polymerases.

The ability of Escherichia coli DNA polymerase I to copy over apurinic sites was demonstrated using single-stranded circular DNA of bacteriophage ØX174 as a template and starting DNA synthesis at a fixed point. Analysis of the newly synthesized ØX174 restriction fragments on neutral and alkaline sucrose gradients shows that synthesis proceeded past apurinic sites. When using depurinated ØX174 DNA containing the am 3 amber mutation as a template for copying by E. coli DNA polymerase I, an increased reversion to wild type is observed after transfection into E. coli spheroplasts. The enhancement in reversion frequency is proportional to the extent of depurination, suggesting that depurination is also mutagenic during copying natural DNA in vitro.

When noncopied depurinated ØX174 am3 DNA is transfected in E. coli spheroplasts, no increase in reversion frequency is observed above background level. However, when the spheroplasts are derived from bacteria in which the SOS response had been induced by UV irradiation, a substantial increase is observed for depurinated molecules, whereas no increase is observed for nondepurinated templates, suggesting in vivo mutagenesis at depurinated sites.

In each of the different assay systems investigated, the increase in misincorporation or reversion frequency is a linear function of the number of sites and is abolished by treatment of the depuri nated templates with alkali, which rapidly induces strand breakage at apurinic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baltz, R. H., Bingham, P. M., and Drake, J. W., 1976, Heat mutagenesis in bacteriophage T4: The transition pathway, Proc. Natl. Acad. Sci. U.S.A., 73:1269.

    Article  PubMed  CAS  Google Scholar 

  • Battula, N., and Loeb, L. A., 1974, The infidelity of avian myelo-blastosis virus deoxyribonucleic acid polymerase in polynucleotide replication, J. Biol. Chem., 249:4086.

    PubMed  CAS  Google Scholar 

  • Bautz, E., and Freese, E., 1960, On the mutagenic effect of alkylating agents, Proc. Natl. Acad. Sci. U.S.A., 46:1585.

    Article  PubMed  CAS  Google Scholar 

  • Bingham, P. M., Baltz, R. H., Ripley, L. S., and Drake, J. W., 1976, Heat mutagenesis in bacteriophage Tit: The transversion pathway Proc. Natl. Acad. Sci. U.S.A., 73:4159.

    Article  PubMed  CAS  Google Scholar 

  • Cornelis, J. J., Lupker, J. H., and Van der Eb, A. J., 1980, UV- reactivation, virus production and mutagenesis of SV-40 in UV-irradiated monkey kidney cells, Mutat. Res., 71:139.

    PubMed  CAS  Google Scholar 

  • Deutsch, W. A., and Linn, S., 1979, An apurinic DNA binding activity from cultured human fibroblasts that specifically inserts purines into depurinated DNA, Proc. Natl. Acad. Sci. U.S.A., 76:1089.

    Article  Google Scholar 

  • Drake, J. W., and Baltz, R. H., 1976, The biochemistry of mutagenesis, Annu. Rev. Biochem., 45:11.

    Article  PubMed  CAS  Google Scholar 

  • Essigmann, J. M., Croy, R. G., Nadzan, A. M., Busby, W. F., Reinhold V. N., Büchi, G., and Wogan, G. N., 1977, Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro, Proc. Natl. Acad. Sci. U.S.A., 74:1870.

    Article  PubMed  CAS  Google Scholar 

  • Freese, E. B., 1961, Transitions and transversions induced by depurinating agents, Proc. Natl. Acad. Sci. U.S.A., 47:540.

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt, P. C., Cooper, P. K., Ganesan, A. K., and Smith, C. A., 1979, DNA repair in bacteria and mammalian cells, Annu. Rev. Biochem., 48:783.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, W. T., Lin, E. J., Harvey, R. G., and Weiss, S. B., 1977, Mechanism of phage ØX174 DNA inactivation by benzo[a]pyrene-7, 8-dihydrodiol-9,10-epoxide, Proc. Natl. Acad. Sci. U.S.A., 74: 3335.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, T. A., and Loeb, L. A., 1979, On the fidelity of DNA replication: Effect of divalent metal ion activators and deoxyribo- nucleoside triphosphate pools on in vitro mutagenesis, J. Biol. Chem., 254:5718.

    Google Scholar 

  • Kunkel, T. A., and Loeb, L. A., 1980, On the fidelity of DNA replication: The accuracy of Escherichia coli DNA polymerase I in copying natural DNA in vitro, J. Biol. Chem., 255:9961.

    Google Scholar 

  • Kunkel, T. A., Shearman, C. W., and Loeb, L. A., 1981, Mutagenesis in vitro by depurination of ØX174 DNA, Nature, 291: 349.

    Article  PubMed  CAS  Google Scholar 

  • Lawley, P. D., and Brookes, P., 1963, Further studies on the alkylation of nucleic acids and their constituent nucleotides, Biochem. J., 89:127.

    PubMed  CAS  Google Scholar 

  • Lawley, P. D., and Martin, C. N., 1975, Molecular mechanisms in alkylation mutagenesis: Induced reversion of bacteriophage T4rII AP72 by ethyl methanesulphonate in relation to extent and mode of ethylation of purines in bacteriophage deoxyribonucleic acid, Biochem. J., 145:85.

    Google Scholar 

  • Lindahl, T., 1979, DNA glycosylases, endonucleases for apurinic/ apyrimidinic sites and base excision-repair, Prog, Nucleic Acid Res. Mol. Biol., 22:135.

    Article  CAS  Google Scholar 

  • Lindahl, T., and Andersson, A., 1972, Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid, Biochemistry., 11: 3618.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, T., and Nyberg, B., 1972, Rate of depurination of native deoxyribonucleic acid, Biochemistry, 11: 3610.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, L. A., Kunkel, T. A., and Schaaper, R. M., 1980, Fidelity of copying natural DNA templates, in: “Mechanistic Studies on DNA Replication and Genetic Recombination,” Vol. XIX, B. Alberts. C. F. Fox, and F. J. Stusser, eds., Academic Press, New York.

    Google Scholar 

  • Moore, P., and Strauss, B. S., 1979, Sites of inhibition of in vitro DNA synthesis in carcinogen- and UV-treated ØX174 DNA, Nature, 278: 664.

    Article  PubMed  CAS  Google Scholar 

  • Radman, M., 1974, Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis, in: “Molecular and Environmental Aspects of Mutagenesis,” L. Prakash, F. Sherman, M. W. Miller, C. M. Lawrence, and H. W. Taber, eds., C. A. Thomas, Springfield, Illinois.

    Google Scholar 

  • Sarasin, A. R., and Benoit, A., 1980, Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells, Mutat. Res., 70:71.

    PubMed  CAS  Google Scholar 

  • Sarasin, A. R., and Hanawalt, P. C., 1978, Carcinogens enhance survival of UV-irradiated simian virus 40 in treated monkey kidney cells: Induction of a recovery pathway? Proc. Natl. Acad. Sci. U.S.A., 75:346.

    Google Scholar 

  • Schaaper, R. M., and Loeb, L. A., 1981, Depurination causes mutations in SOS-induced cells. Proc. Natl. Acad. Sci. U.S.A., 78:1773.

    Article  PubMed  CAS  Google Scholar 

  • Shearman, C. W., and Loeb, L. A., 1977, Depurination decreases fidelity of DNA synthesis in vitro, Nature, 270: 537.

    Article  PubMed  CAS  Google Scholar 

  • Shearman, C. W., and Loeb, L. A., 1979, Effects of depurination on the fidelity of DNA synthesis, J. Mol. Biol., 128:197.

    Article  PubMed  CAS  Google Scholar 

  • Weymouth, L. A., and Loeb, L. A., 1978, Mutagenesis during in vitro DNA synthesis, Proc. Natl. Acad. Sci. U.S.A. 75:1924.

    Google Scholar 

  • Witkin, E. M., 1976, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev., 40:869.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Schaaper, R.M., Kunkel, T.A., Loeb, L.A. (1982). Depurination of DNA as a Possible Mutagenic Pathway for Cells. In: Lemontt, J.F., Generoso, W.M. (eds) Molecular and Cellular Mechanisms of Mutagenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3476-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3476-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3478-1

  • Online ISBN: 978-1-4613-3476-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics