Skip to main content

Abstract

Experimental and theoretical results on isolated moving dislocations are used as the basis to deduce group behavior of dislocations within and just behind shock fronts. For strong shocks it is concluded that the shock front consists of a Smith interface of supersonic dislocations with a narrow zone immediately behind it of high density subsonic moving dislocations. The Smith interface does not exist in weaker shocks. The dislocation density increases as the square of the shock wave pressure for weaker shocks and becomes almost independent of shock pressure for very strong shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weertman, J., and Weertman, J.R., Moving Dislocations in “Dislocations in Solids”, Vol. 3, Nabarro, F.R.N., (ed.), North-Holland, Amsterdam, p. 1, (1980).

    Google Scholar 

  2. Smith, C.S., Trans. Met. Soc. AIME, 212, 574 (1958).

    CAS  Google Scholar 

  3. Weertman, J., Dislocation Mechanics at High Strain Rates, in “Metallurgical Effects at High Strain Rates”, Rohde, R.W., Butcher, B.M., Holland, J.R., and Karnes, C.H. (eds.), Plenum Press, New York, p. 319, (1973).

    Google Scholar 

  4. Meyers, M.A., A model for Dislocation Generation in Shock- Wave Deformation, in “Strength of Metals and Alloys”, Vol. 1, Haasen, P., Gerold, V., and Kostorz, G. (eds.), Pergamon Press, New York, p. 547, (1979).

    Google Scholar 

  5. Urabe, N., and Weertman, J., Mater. Sci. Eng., 18, 41 (1979).

    Google Scholar 

  6. Granato, A.V., Microscopic Mechanisms of Dislocation Drag,in “Metallurgical Effects at High Strain Rates”, Rohde, R. W., Butcher, B. M., Holland, J. R., and Karnes, C.H. (eds.), Plenum Press, New York, p. 255, (1973).

    Google Scholar 

  7. Parameswaran, V.R., and Weertman, J., J. Appl. Phys., 43, 2982 (1972).

    Article  CAS  Google Scholar 

  8. Simmons, G., and Wang, H., “Single Crystal Elastic Constants and Calculated Aggregate Properties: A HANDBOOK”, M.I.T. Press, Cambridge, Mass., (1971).

    Google Scholar 

  9. Gilman, J.J., J. Appl. Phys., 50, 4059 (1979).

    Article  CAS  Google Scholar 

  10. Meyers, M.A., Scripta Met., 12, 21 (1978).

    Article  CAS  Google Scholar 

  11. Murr, L.E., and Kuhlmann-Wilsdorf, D., Acta Met., 26, 847 (1978).

    Article  CAS  Google Scholar 

  12. Murr, L.E., Scripta Met., 12, 201 (1978).

    Article  CAS  Google Scholar 

  13. LaRouche, S., and Mikkola, D.E., Scripta Met. 3 12, 543 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Weertman, J. (1981). Moving Dislocations in a Shock Front. In: Meyers, M.A., Murr, L.E. (eds) Shock Waves and High-Strain-Rate Phenomena in Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3219-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3219-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3221-3

  • Online ISBN: 978-1-4613-3219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics