Skip to main content

Abstract

The physical mechanisms determining the operating conditions of millimeter-waves IMPATT diodes are first reviewed. It is shown, within the framework of numerical simulations that the non-steady state feature of carrier generation and transport induce additional phenomena which might considerably change and often reduce the high frequency performances of this device. Lastly, with the acquired understanding, a discussion of the various means which could be used to improve the performances, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. Blakey, R. K. Froelich, R. O. Grondin, R. K. Mains, and G. I. Haddad, Proc. 8th Cornell Conference on Microwave Semi-Conductor Devices and Circuits, August (1981).

    Google Scholar 

  2. D. Lippens and E. Constant, j. de Phys. Coll. C7, Tome 42 (Oct. 1981). International Conf. on hot electrons, Montpellier, France.

    Google Scholar 

  3. H. Schichijo and K. Hess, Physical Review B. Vol. 23, n°8 (1981).

    Google Scholar 

  4. K. Blotekjaer, IEEE Electron devices, Vol. ED 17, n°l (1970).

    Google Scholar 

  5. D. Lippens, E. Constant, M. R. Friscourt, P. A. Rolland and G. Salmer, IEEE Electron device lett. to be published.

    Google Scholar 

  6. D. Lippens and E. Constant, Electron Lett. Vol. 17, n°23 (Nov. 1981).

    Google Scholar 

  7. Y. Okuto and C. R. Crowell, Phys. Rev. B 10, 4284 (1974).

    Article  ADS  Google Scholar 

  8. J. Zimmermann, Y. Leroy and E. Constant, J. Appl. Phys. Vol. 49, p. 3378 (1978).

    Article  ADS  Google Scholar 

  9. R. L. Kuvas and W. E. Schroeder, IEEE Trans, on Electron Devices ED 22, n°8, 1975.

    Google Scholar 

  10. E. Constant, A. Mircea, J. Pribetich and A. Farrayre, J. of Appl. Phys. Vol. 46, n°9, 1975.

    Google Scholar 

  11. Y. Hirachi-Kobayashi, K. Ogasawara, T. Hisatsugu, Y. Toyama, Tech. Dig. 1976, IEEE Electron Device Meet.

    Google Scholar 

  12. B. Culshaw and Giblin, Electron Lett. Vol. 10, (1974).

    Google Scholar 

  13. E. Allamando, M. Chive, P. Kennis, M. Lefebvre, Acta Electronica 17, 2 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Lippens, D., Constant, E., Friscourt, M.R., Rolland, P.A., Salmer, G. (1984). Millimeter Impatt Diodes. In: Grubin, H.L., Hess, K., Iafrate, G.J., Ferry, D.K. (eds) The Physics of Submicron Structures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2777-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2777-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9714-7

  • Online ISBN: 978-1-4613-2777-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics