Skip to main content

Mutagenesis Studies with Cultured Mammalian Cells: Problems and Prospects

  • Chapter
Mutation, Cancer, and Malformation

Part of the book series: Environmental Science Research ((ESRH,volume 31))

Summary

Environmental mutagenesis is thought to play an important role in hereditary and somatic diseases in man. Numerous studies have been made in recent years assaying the mutagenic response of cultured mammalian cells, with the hope of better understanding the effects of environmental agents on human populations. Different test systems have been developed to detect either gene or chromosome mutations at the cellular and molecular levels. Although some of the heritable variations could be epigenetic, direct evidence is available demonstrating that true point mutations indeed occur in mammalian cells. It is now possible to identify specific molecular alterations in mammalian cell mutants arising in vitro.

The development of methods for quantifying single gene mutations in cultured mammalian cells has been considered in this presentation, with special reference to (a) the choice of cell material, (b) development of selective markers, (c) the various factors that affect the expression of mutations, and (d) the application of appropriate statistical methods for the estimation of mutation rates. The role of DNA replication and repair in the mutational process can be illustrated by a concomitant change in mutability, mutagen-sensitivity and other metabolic and genetic alterations in mutant cells that are defective in DNA metabolism.

Recent technical advances have permitted analysis of somatic cell mutants at the protein and nucleic acid levels. Amino acid sequence analysis of certain enzymes and studies on DNA structure changes in cell mutants arising in vitro are now feasible. Furthermore, methods have been developed to screen for various classes of electrophoretic mutants occurring at more than 40 well defined gene loci among cell clones isolated after chemical or physical mutagenesis. Unlike the selective procedures which detect single-locus mutations leading to the loss of a vital function, this multilocus approach has permitted determinations of the frequencies of mutations which result in variant proteins les drastically modified from the wild type. Finally, human somatic cell mutation rates, both spontaneous and induced, at various loci may be estimated by changes in protein products visualized by two-dimensional polyacrylamide gel electrophoresis. The results obtained may afford us the opportunity to compare the mutation rates of functionally vital and selectively neutral markers, as well as those in human somatic and germ cells using the same panel of protein markers.

Supported by research grants GM 20608 and CA 26803 from National Institutes of Health, United States Public Health Service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbondandolo, A. (1977) Prospects for evaluating genetic damage in mammalian cells in culture.Mutation Res. 42: 279 – 298.

    Article  Google Scholar 

  2. Adair, G.M., M.J. Siciliano, and R.M. Humphrey (1981) Induction of electrophoretic mutants at multiple gene loci in CHO cells: Differential mutability of gene loci and apparent “Chot spots” for mutation. J. Cell. Biol. 91:382a

    Google Scholar 

  3. Arlett, C. F. , D. Turnbull, S. A. Harcourt, A. R. Lehmann, and C. M. Colella (1975) A comparison of the 8-azaguanine and ouabain-resistance systems for the selection of induced mutant Chinese hamster cells.Mutation Res. 33: 261 – 278.

    Article  Google Scholar 

  4. Armitage, P. (1952) The statistical theory of bacterial populations subject to mutation.J. Roy. Statist. Soc. B 14: 1 – 40.

    MathSciNet  MATH  Google Scholar 

  5. Armitage, P. (1953) Statistical concepts in the theory of bacterial mutation. J. Hygiene 51:162–184.

    Google Scholar 

  6. Baker, R. M. , D. M. Brunette, R. Mankovitz, L. H. Thompson, G. F. Whitmore, L. Siminovitch, and J. E. Till (1974) Ouabain-resistant mutants of mouse and hamster cells in culture.Cell1: 9 – 21.

    Google Scholar 

  7. Barclay, B.J., and J.G. Little (1978) Genetic damage during thymidylate starvation in Saccharomyces cerevisiae. Molec. Gen. Genet. 160:33–40

    Google Scholar 

  8. Barclay, B.J., B.A. Kunz, J.G. Little, and R.H. Haynes (1982) Genetic and biochemical consequences of thymidylate stress. Canad. J. Biochem. 60:172–194

    Google Scholar 

  9. Barrett, C. J. , N. E. Bias, and P. O. P. Ts’o (1978) A mammalian cellular system for the concomitant study of neoplastic transformation and somatic mutation.Mutation Res. 50: 121 – 136.

    Google Scholar 

  10. Bartsch, H. , C. Malareille, A. –M. Camus, G. Martel–Planche, G. Brun, A. Hautefeuille, N. Sabadie, A. Barbin, T. Kuroki, C. Drevon, C. Piccoli, and R. Montesano (1980) Validation and comparative studies on 180 chemicals withS. typhimuriumstrains and V79 Chinese hamster cells in the presence of various metabolizing systems. Mutation Res. 76: 1 – 50.

    Google Scholar 

  11. Benditt, E.P., and J.M. Benditt (1973) Evidence for a monoclonal origin of human atherosclerotic plaque. Proc. Natl. Acad. Sci. USA 70:1753–1756

    Google Scholar 

  12. Bradley, M. O. , and N. A. Sharkey (1978) Mutagenicity of thymidine to cultured Chinese hamster cells.Nature274: 607 – 608.

    Google Scholar 

  13. Bradley, M. O. , B. Bhuyan, M. C. Francis, R. Langenbach, A. Peterson, and E. Huberman (1981) Mutagenesis by chemical agents in V79 Chinese hamster cells: A review and analysis of the literature.Mutation Res. 87: 81 – 142.

    Google Scholar 

  14. Bresler, S. E. , M. I. Mosevitsky, and L. G. Vyacheslavov (1973) Mutations as possible replication errors in bacteria growing under conditions of thymine deficiency.Mutation Res. 19: 281 – 293.

    Google Scholar 

  15. Busch, D.B., J.E. Cleaver, and D.A. Glaser (1980) Large scale isolation of UV-sensitive clones of CHO cells. Somat. Cell Genet. 6:407–418

    Google Scholar 

  16. Cairns, J. (1978)Cancer, Science and Society, Freeman, San Francisco, California.

    Google Scholar 

  17. Caskey, C. T. , A. L. Beaudet, D. J. Roufa, and F. D. Gillin (1974) Characterization of 8-azaguanine resistant Chinese hamster fibroblast mutants, InMolecular and Environmental Aspects of Mutagenesis, L. Prakash, F. Sherman, M. W. Miller, C. W. Lawrence, and H. W. Taber, Eds. , C. C. Thomas, Springfield, Illinois, pp. 196 – 209.

    Google Scholar 

  18. Caskey, C. T. , and G. D. Kruh (1979) The HPRT locus.Cell16: 1 – 9.

    Article  Google Scholar 

  19. Chang, C. C. , M. Castellazzi, T. W. Glover, and J. E. Trosko (1978a) Effects of barman and norharman on spontaneous and ultraviolet light-induced mutagenesis in cultured Chinese hamster cells.Cancer Res. 38: 4527 – 4533.

    Google Scholar 

  20. Chang, C. C. , S. M. D’Ambrosio, R. Schultz, J. E. Trosko, and R. B. Setlow (1978b) Modification of UV-induced mutation frequencies in Chinese hamster cells by dose fractionation, cycloheximide and caffeine treatments.Mutation Res. 52: 231 – 245.

    Google Scholar 

  21. Chang, C. C. , J. E. Trosko, and T. Akera (1978c) Characterization of ultraviolet light-induced ouabain-resistant mutations in Chinese hamster cells.Mutation Res. 51: 85 – 98.

    Google Scholar 

  22. Chang, C.C., J.A. Boezi, S.T. Warren, C.L.K. Sabourin, P.K. Liu, L. Glatzer, and J.E. Trosko (1981) Isolation and characterization of a UV-sensitive hypermutable aphidicolin- resistant Chinese hamster cell line. Somat. Cell Genet. 7:235–253

    Google Scholar 

  23. Chasin, L. A. (1973) The effect of ploidy on chemical mutagenesis in cultured Chinese hamster cells. J. Cell Physiol. 82: 299 – 308.

    Article  Google Scholar 

  24. Chu, E. H. Y. (1971a) Mammalian cell genetics III. Characterization of X-ray-induced forward mutations in Chinese hamster cell cultures.Mutation Res. 11: 23 – 34.

    Article  Google Scholar 

  25. Chu, E. H. Y. (1971b) Induction and analysis of gene mutations in mammalian cell cultures, InEnvironmental Chemical Mutagens, A. Hollaender, Ed. , Plenum Publ. Corp. , New York, pp. 411 – 444.

    Google Scholar 

  26. Chu, E. H. Y. (1974) Induction and analysis of gene mutations in cultured mammalian somatic cells.Genetics78: 115 – 132.

    Google Scholar 

  27. Chu, E.H.Y. (1983) Mutation systems in cultured mammalian cells. Ann. N.Y. Acad. Sci. 407:221–230

    Google Scholar 

  28. Chu, E.H.Y., and V.C. Monesi (1960) Analysis of X-ray induced chromosome aberrations in mouse somatic cells in vitro. Genetics 45:981

    Google Scholar 

  29. Chu, E.H.Y., and H.V. Mailing (1968) Mammalian cell genetics II. Chemical induction of specific locus mutations in Chinese hamster cells in vitro. Proc. Natl. Acad. Sci. USA 61:1306–1312

    Google Scholar 

  30. Chu, E. H. Y. , P. A. Brimer, C. K. Schenley, T. Ho, and H. V. Mailing (1974) Reversion studies of chemically–induced mutants in Chinese hamster cells, InMolecular and Environmental Aspects of Mutagenesis, L. Prakash, F. Sherman, M. W. Miller, C. W. Lawrence, and H. W. Taber, Eds. , Charles C. Thomas, Publ. , Springfield, Illinois, pp. 178 – 195.

    Google Scholar 

  31. Chu, E. H. Y. , N. C. Sun, and C. C. Chang (1975) Genetic markers associated with hamster chromosomes,In Mammalian Cells: Problems and Probes, C. R. Richmond, D. F. Peterson, P. P. Mullaney, and E. C. Anderson, Eds. , National Technical Information Service, U. S. Dept. Commerce, Springfield, Virginia, pp. 228 – 238.

    Google Scholar 

  32. Chu, E. H. Y. , J. D. McLaren, I. C. Li, and B. Lamb (1982) Pleiotropic CTP synthetase mutants of Chinese hamster cells.Genetics100:sl2–sl3.

    Google Scholar 

  33. Clive, D. , K. D. Johnson, J. F. S. Spector, A. G. Batson, and M. M. M. Brown (1979) Validation and characterization of the L5178Y TK+/- mouse lymphoma assay system.Mutation Res. 59: 61 – 108.

    Article  Google Scholar 

  34. Cook, W.D., S. Rudikoff, A.M. Giusti, and M.D. Scharff (1982) Somatic mutation in a cultured mouse myeloma cell affects antigen binding. Proc. Natl. Acad. Sci. USA 79:1240–1244

    Google Scholar 

  35. Cox, R. (1982) Mechanisms of mutagenesis in cultured mammalian cells, InEnvironmental Mutagens and Carcinogens, T. Sugimura, S. Kondo, and H. Takebe, Eds. , A. R. Liss, Inc. , New York, pp. 157 – 166.

    Google Scholar 

  36. Cox, R. , and W. K. Masson (1978) Do radiation-induced thioguanine-resistant mutants of cultured mammalian cells arise by HGPRT gene mutation or X-chromosome rearrangement?Nature276: 629 – 630.

    Google Scholar 

  37. DeMars, R. (1974) Resistance of cultured human fibroblasts and other cells to purine and pyrimidine analogues in relation to mutagenesis detection.Mutation Res. 24: 335 – 364.

    Google Scholar 

  38. Duncan, M. E. , and P. Brookes (1973) The induction of azaguanine-resistant mutants in cultured Chinese hamster cells by reactive derivatives of carcinogenic hydrocarbons.Mutation Res. 21: 107 – 118.

    Google Scholar 

  39. Feldman, G. , J. Remsen, K. Shinohara, and P. Cerrutti (1978) Excisability and persistence of benzo(a)pyrene DNA adducts in epithelioid human lung cells.Nature274: 796 – 798.

    Google Scholar 

  40. Fox, M. , and J. M. Boyle (1976) Factors affecting the growth of Chinese hamster cells in HAT selection media.Mutation Res. 35: 445 – 464.

    Google Scholar 

  41. Generoso, W. M. , M. D. Shelby, and F. J. de Serres (Editors) (1980)DNA Repair and Mutagenesis in Eukaryotes, Plenum Publ. Corp. , New York.

    Google Scholar 

  42. Gillen, F. D. , D. J. Roufa, A. L. Beaudet, and C. T. Caskey (1973) 8-azaguanine resistance in mammalian cells. I. Hypoxanthine guanine phosphoribosyltransferase.Genetics73:320–324.

    Google Scholar 

  43. Graf, L.H., and L.A. Chasin (1982) Direct demonstration of genetic alterations at the dihydrofolate reductase locus by gamma irradiation. Mol. Cell. Biol. 2:93–96

    Google Scholar 

  44. Grant, S. G. , and R. G. Worton (1982) 5-azacytidine-induced reactivation of HPRT on the inactive X chromosome in diploid Chinese hamster cells.Amer. J. Hum. Genet. 34:171A.

    Google Scholar 

  45. Gupta, R. S. , D. Y. H. Chan, and L. Siminovitch (1978) Evidence for functional hemizygosity at the Emt R locus in CHO cells through segregation analysis.Cell14: 1007 – 1013.

    Google Scholar 

  46. Gupta, R. S. , and S. Goldstein (1980) Diphtheria toxin resistance in human fibroblast cell strains from normal and cancer-prone individuals.Mutation Res. 73: 331 – 338.

    Google Scholar 

  47. Hand, R., and J. German (1975) A retarded rate of DNA chain growth in Bloom’s syndrome. Proc. Natl. Acad. Sci. USA 72:758–762

    Google Scholar 

  48. Hand, R., and J. German (1977) Bloom’s syndrome: DNA replication in cultured fibroblasts and lymphocytes. Hum. Genet. 38:297–306

    Google Scholar 

  49. Harris, M. (1967) Phenotypic expression of drug resistance in cell cultures. J. Natl. Cancer Inst. 38:185–192

    Google Scholar 

  50. Harris, M. (1973) Phenotypic expression of drug resistance in hybrid cells. J. Natl. Cancer Inst. 50:423–429

    Google Scholar 

  51. Harris, M. (1982) Induction of thymidine kinase in enzyme-deficient Chinese hamster cells.Cell29: 483 – 492.

    Google Scholar 

  52. Hodgkiss, R. J. , J. Brennand, and M. Fox (1980) Reversion of 6-thioguanine resistant Chinese hamster cell lines: Agent specificity and evidence for the repair of promutagenic lesions.Carcinogenesis1: 175 – 187.

    Google Scholar 

  53. Holden, J.A., and W.N. Kelley (1978) Human hypoxanthine-guanine phosphoribosyltransferase: Evidence for a tetrameric structure. J. Biol. Chem. 253:4459–4463

    Google Scholar 

  54. Howard–Flanders, P. (1981) Mutagenesis in mammalian cells.Mutation Res. 86: 307 – 327.

    Google Scholar 

  55. Hozier, J. , J. Sawyer, M. Moore, B. Howard, and D. Clive (1981) Cytogenetic analysis of the L5178/TK TKmouse lymphoma mutagenesis assay system.Mutation Res. 84: 169 – 181.

    Google Scholar 

  56. Hsie, A.W., P.A. Brimer, T.J. Mitchell, and D.G. Gosslee (1975) The dose-response relationship for ethyl methanesulfonate-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells. Somat. Cell Genet. 1:247–261.

    Google Scholar 

  57. Hsie, A. W. , P. A. Brimer, R. Machnoff, and M. H. Hsie (1977) Further evidence for the genetic origin of mutations in mammalian somatic cells: The effects of ploidy level and selection stringency on dose–dependent chemical mutagenesis to purine analogue resistance in Chinese hamster ovary cells.Mutation Res. 45: 271 – 282.

    Google Scholar 

  58. Hsie, A. W. , J. P. O’Neill, and V. K. McElheny (Editors) (1979)Banbury Report 2: Mammalian Cell Mutagenesis -The maturation of test systems, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  59. Hsie, A. W. , D. A. Casciano, D. B. Couch, D. F. Krahn, J. P. O’Neill, and B. L. Whitfield (1981) The use of Chinese hamster ovary cells to quantify specific locus mutations and to determine mutagenicity of chemicals. A report of the GENE-TOX program.Mutation Res. 86: 193 – 214.

    Google Scholar 

  60. Hsu, I.C., G.D. Stoner, H. Autrup, B.F. Trump, J.K. Selkirk, and C.C. Harris (1978) Human bronchus-mediated mutagenesis of mammalian cells by carcinogenic polynuclear aromatic hydrocarbons. Proc. Natl. Acad. Sci. USA 75:2003–2007

    Google Scholar 

  61. Huberman, E., L. Aspiras, C. Heidelberger, P.L. Grover, and P. Sims (1971) Mutagenicity to mammalian cells of epoxides and other derivatives of polycyclic hydrocarbons. Proc. Natl. Acad. Sci. USA 68:3195–3199.

    Google Scholar 

  62. Huberman, E. , R. Mager, and L. Sachs (1976) Mutagenesis and transformation of normal cells by chemical carcinogens.Nature264: 360 – 361.

    Google Scholar 

  63. Huberman, E., and L. Sachs (1976) Mutability of different genetic loci in mammalian cells by metabolically activated carcinogenic polycyclic hydrocarbons. Proc. Natl. Acad. Sci. USA 73:188–192

    Google Scholar 

  64. Jacobs, L. , and R. DeMars (1978) Quantification of chemical mutagenesis in diploid human fibroblasts: Induction of azaguanine-resistant mutants by N-methyl-N-nitrosoguanidine.Mutation Res. 53: 29 – 53.

    Google Scholar 

  65. Jolly, D.J., A.C. Esty, H.U. Bernard, and T. Friedmann (1982) Isolation of a genomic clone partially encoding human hypoxanthine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 79:5038–5041

    Google Scholar 

  66. Kadouri, A. , J. J. Kunce, and K. G. Lark (1978) Evidence for dominant mutations reducing HGPRT activity.Nature274: 256 – 259.

    Google Scholar 

  67. Kakunaga, T. (1977) The transformation of human diploid cells by chemical carcinogens, InOrigin of Human Cancer,Cold Spring Harbor Symp. Quant. Biol. 43: 1537 – 1548.

    Google Scholar 

  68. Kao, F.T., and Puck, T.T. (1968) Genetics of somatic mammalian cells. VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc. Natl. Acad. Sci. USA 60:1275–1281

    Google Scholar 

  69. Kao, F. T. , R. T. Johnson, and T. T. Puck (1969) Complementation analysis on virus-fused Chinese hamster cells with nutritional markers.Science164: 312 – 314.

    Google Scholar 

  70. Kapp, L.N. (1982) DNA fork displacement rates in Bloom’s fibroblasts. Biochim. Biophys. Acta 696:226–227

    Google Scholar 

  71. Kavathas, P., F.H. Bach, and R. DeMars (1980) Gamma ray-induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells, Proc. Natl. Acad. Sci. USA 77:4251–4255.

    Google Scholar 

  72. Knaap, A. G. A. C. , and J. W. I. M. Simons (1975) A mutational assay system for L5178Y mouse lymphoma cells, using hypoxanthine-guanine phosphoribosyl transferase (HGPRT) deficiency as marker. The occurrence of a long expression time for mutations induced by X-rays and EMS.Mutation Res. 30: 97 – 110.

    Article  Google Scholar 

  73. Krahn, D. F. , and C. Heidelberger (1977) Liver homogenate-mediated mutagenesis in Chinese hamster V79 cells by polycyclic aromatic hydrocarbons and aflatoxins.Mutation Res. 46: 27 – 44.

    Google Scholar 

  74. Kunz, B. A. , and R. H. Haynes (1982) DNA repair and the genetic effects of thymidylate stress in yeast.Mutation Res. 93: 353 – 375.

    Google Scholar 

  75. Kuroki, T., and S.Y. Miyashita (1976) Isolation of UV-sensitive clones from mouse cell lines by Lederberg style replica plating. J. Cell. Physiol. 90:79–90

    Google Scholar 

  76. Lea, D.A., and C.A. Coulson (1949) The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–285

    Google Scholar 

  77. Li, A. P. (1981) Simplification on the CH0/HGPRT mutation assay through the growth of Chinese hamster ovary cells as unattached cultures.Mutation Res. 85: 165 – 175.

    Google Scholar 

  78. Li, I.C., D.A. Blake, I.J. Goldstein, and E.H.Y. Chu (1980) Modification of cell membrane in variants of Chinese hamster cells resistant to abrin. Exper. Cell Res. 129:351–360

    Google Scholar 

  79. Li, I.C., and E.H.Y. Chu (1982) Direct selection of mammalian cell mutants deficient in thymidylate synthetase. J. Cell. Biol. 95:447a

    Google Scholar 

  80. Li, I. C. , J. Fu, Y. T. Hung, and E. H. Y. Chu (1983) Estimation of mutation rates in cultured mammalian cells.Mutation Res. 111: 253 – 262.

    Google Scholar 

  81. Littlefield, J.W. (1964) The selection of hybrid mouse fibroblasts. Cold Spring Harbor Symp. Quant. Biol. 29:161–166

    Google Scholar 

  82. Liu, P. K. , C. C. Chang, and J. E. Trosko (1982) Association of mutator activity with UV sensitivity in an aphidicolin-resistant mutant of Chinese hamster V79 cells.Mutation Res. 106: 317 – 332.

    Google Scholar 

  83. Liu, P.K., C.C. Chang, J.E. Trosko, D.K. Dube, G.M. Martin, and L.A. Loeb (1983) Mammalian mutator mutant with an aphidicolin-resistant DNA polymerase alpha. Proc. Natl. Acad. Sci. USA 80:797–801.

    Google Scholar 

  84. Lobban, P. E. , and L. Siminovitch (1975) alpha-Amanitin resistance: A dominant mutation in CH0 cells.Cell4:167–172.

    Google Scholar 

  85. Luria, S. E. (1966) Mutations of bacteria and of bacteriophage, InPhage and the Origins of Molecular Biology, Cairns, J. , G. S. Stent, and J. D. Watson, Eds. , Cold Spring Harbor Laboratory, New York, pp. 173 – 179.

    Google Scholar 

  86. Luria, S. E. , and M. Delbruck (1943) Mutations of bacteria from virus sensitivity to virus resistance.Genetics28: 491 – 511.

    Google Scholar 

  87. Lyon, M. (1962) Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 14:135–148

    Google Scholar 

  88. McMillan, S. , and M. Fox (1979) Failure of caffeine to influence induced mutation frequencies and the independence of cell killing and mutation induction in V79 Chinese hamster cells.Mutation Res. 60: 91 – 107.

    Google Scholar 

  89. Maher, V. M. , L. M. Quellette, R. D. Curren, and J. J. McCormick (1976) Frequency of ultraviolet light–induced mutations is higher in Xeroderma pigmentosum variant cells than in normal human cells.Nature261: 593 – 595.

    Google Scholar 

  90. Maher, V. M. , J. J. McCormick, P. L. Grover, and P. Sims (1977) Effect of DNA repair on the cytotoxicity and mutagenicity of polycyclic hydrocarbon derivatives in normal and Xeroderma pigmentosum fibroblasts.Mutation Res. 44: 313 – 326.

    Google Scholar 

  91. Mailing, H. V. , and E. H. Y. Chu (1974) Development of mutational model systems for study of carcinogenesis, InChemical Carcinogenesis, Part B, P. O. P. Ts’o, and J. A. DiPaolo, Eds. , Marcell Dekker, Inc. , New York, pp. 545 – 563.

    Google Scholar 

  92. Mankovitz, R. , M. Buchwald, and R. M. Baker (1974) Isolation of ouabain-resistant human diploid fibroblasts. Cell 3: 221 – 226.

    Article  Google Scholar 

  93. Meuth, M. (1981) Role of deoxynucleoside triphosphate pools in the cytotoxic and mutagenic effects of DNA alkylating agents. Somat. Cell Genet. 7:89–102

    Google Scholar 

  94. Meuth, M., N. L’Heureux-Huard, and M. Trudel (1979a) Characterization of a mutator gene in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 76:6505–6509

    Google Scholar 

  95. Meuth, M., M. Trudel, and L. Siminovitch (1979b) Selection of Chinese hamster cells auxotrophic for thymidine by 1-beta-D-arabinofuranosyl cytosine. Somat. Cell Genet. 5:303–318

    Google Scholar 

  96. Meuth, M., M. Trudel, and L. Siminovitch (1979b) Selection of Chinese hamster cells auxotrophic for thymidine by 1-beta-D-arabinofuranosyl cytosine. Somat. Cell Genet. 5:303–318

    Google Scholar 

  97. Miller, E. C. (1978) Some current perspectives on chemical carcinogenesis in humans and experiments on animals.Cancer Res. 38: 1479 – 1496.

    Google Scholar 

  98. Mohandas, T. , R. S. Sparkes, and L. J. Shapiro (1981) Reactivation of an inactive human X chromosome: Evidence for X inactivation by DNA methylation.Science211: 393 – 396.

    Google Scholar 

  99. Morrow, J. (1983)Eukaryotic Cell Genetics, Academic Press, New York.

    Google Scholar 

  100. Motulsky, A. G. (1983) Impact of genetic disease in man. (This Workshop).

    Google Scholar 

  101. Myhr, B. C. , and J. A. DiPaolo (1975) Requirement for cell dispersion prior to selection of induced azaguanine-resistant colonies of Chinese hamster cells.Genetics80: 157 – 169.

    Google Scholar 

  102. Neel, J. V. (1983) Frequency of spontaneous and induced “point” mutations in higher eukaryotes.J.Hered. 74: 2 – 15.

    Google Scholar 

  103. Newbold, R. F. , C. B. Wigley, M. H. Thompson, and P. Brookes (1977) Cell-mediated mutagenesis in cultured Chinese hamster cells by carcinogenic polycyclic hydrocarbons:Natureand extent of the associated hydrocarbon DNA reaction.Mutation Res. 43: 101 – 116.

    Google Scholar 

  104. Newcombe, H. B. (1948) Delayed phenotypic expression of spontaneous mutation inEscherichia coli. Genetics 33: 447 – 476.

    Google Scholar 

  105. O’Neill, J. P. , P. A. Brimer, R. Machanoff, G. P. Hirsch, and A. W. Hsie (1977) A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system): Development and definition of the system.Mutation Res. 45: 91 – 101.

    Google Scholar 

  106. O’Neill, J. P. , and A. W. Hsie (1979) Phenotypic expression time of mutagen-induced 6-thioguanine resistance in Chinese hamster ovary cells (CHO/HGPRT system).Mutation Res. 59: 109 – 118.

    Google Scholar 

  107. Papageorge, A. G. , E. M. Scolnick, R. Dhar, D. R. Lowry, and E. H. Chang (1982) Mechanism of activation of a human oncogene.Nature300: 143 – 149.

    Google Scholar 

  108. Peterson, A. R. , H. Peterson, and C. Heidelberger (1975) Reversion of the 8-azaguanine resistant phenotype of variant Chinese hamster cells treated with alkylating agents and 5-bromo–2’-deoxyuridine.Mutation Res. 29: 127 – 137.

    Google Scholar 

  109. Peterson, A. R. , D. F. Krahn, H. Peterson, C. Heidelberger, B. K. Bhuyan, and L. H. Li (1976) The influence of serum components on the growth and mutation of Chinese hamster cells in medium containing 8-azaguanine.Mutation Res. 36: 345 – 356.

    Google Scholar 

  110. Peterson, A. R. , J. R. Landolph, H. Peterson, and C. Heidelberger (1978) Mutagenesis of Chinese hamster cells is facilitated by thymidine and deoxycytidine.Nature276: 508 – 510.

    Google Scholar 

  111. Peterson, A. R. , and H. Peterson (1979) Facilitation by pyrimidine deoxyribonucleosides and hypoxanthine of mutagenic and cytotoxic effects of monofunctional alkylating agents in Chinese hamster cells.Mutation Res. 61: 319 – 331.

    Google Scholar 

  112. Reddy, E. P. , R. K. Reynolds, E. Santos, and M. Barbacid (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene.Nature300: 149 – 152.

    Google Scholar 

  113. Regan, J. D. , and R. B. Setlow (1973) Repair of chemical damage to human DNA,In Chemical Mutagens: Principles and Methods for Their Detection, A. Hollaender, Ed. , Plenum Press, New York, Vol. 3, pp. 151–170.

    Google Scholar 

  114. Rosenblum, B.B., S.M. Hanash, N. Yew, and J.V. Neel (1982) Two-dimensional electrophoretic analysis of erythrocyte membranes. Clin. Chem. 28:925–931

    Google Scholar 

  115. Sato, K. , and N. Heida (1980) Mutation induction in a mouse lymphoma cell mutant sensitive to 4–nitroquinoline-l-oxide and ultraviolet radiation.Mutation Res. 71: 233 – 241.

    Google Scholar 

  116. Schultz, R.A., J.E. Trosko, and C.C. Chang (1981) Isolation and partial characterization of mutagen sensitive and DNA repair mutants of Chinese hamster fibroblasts. Environ. Mutagenesis 3:53–64.

    Google Scholar 

  117. Setlow, R. B. (1978) Repair deficient human disorder and cancer.Nature271: 713 – 717.

    Google Scholar 

  118. Shapiro, A. (1946) The kinetics of growth and mutation in bacteria. Cold Spring Harbor Symp. Quant. Biol. 11:228–234

    Google Scholar 

  119. Sharp, J.D., N.E. Capecchi, and M.R. Capecchi (1973) Altered enzymes in drug-resistant variants of mammalian tissue culture cells. Proc. Natl. Acad. Sci. USA 70:3145–3149.

    Google Scholar 

  120. Shaw, E. I. , and A. W. Hsie (1978) Conditions necessary for quantifying ethyl methanesulfonate-induced mutations to purine-analogue resistance in Chinese hamster V79 cells.Mutation Res. 51: 237 – 254.

    Google Scholar 

  121. Shiomi, T., and K. Sato (1979) Isolation of UV-sensitive variants of human FL cells by a viral suicide method. Somat. Cell Genet. 5:193–201

    Google Scholar 

  122. Shiomi, I. , N. Hieda–Shiomi, and K. Sato (1982) A novel mutant of mouse lymphoma cells sensitive to alkylating agents and caffeine.Mutation Res. 103: 61 – 69.

    Google Scholar 

  123. Siciliano, M.J., J. Siciliano, and R.M. Humphrey (1978) Electrophoretic shift mutations in Chinese hamster ovary cells: Evidence for genetic diploidy. Proc. Natl. Acad. Sci. USA 75:1919–1923.

    Google Scholar 

  124. Siciliano, M. J. , B. F. White, and R. M. Humphrey (1983) Electrophoretically detectable mutations induced in CHO cells by varying doses of ultraviolet radiation.Mutation Res. 107: 167 – 176.

    Google Scholar 

  125. Siminovitch, L. (1976) On theNatureof heritable variation in cultured somatic cells.Cell7: 1 – 11.

    Google Scholar 

  126. Skolnick, M. M. (1982) An approach to completely automatic comparison of two-dimensional electrophoresis gels. Clin. Chem. 28: 979 – 986.

    Google Scholar 

  127. Skolnick, M. M. , S. R. Sternberg, and J. V. Neel (1982) Computer programs for adapting two-dimensional gels to the study of mutation. Clin. Chem. 28: 969 – 978.

    Google Scholar 

  128. Smith, M. D. , R. R. Green, L. S. Ripley, and J. W. Drake (1973) Thymineless mutagenesis in bacteriophage T4.Genetics74: 393 – 403.

    Google Scholar 

  129. Stallings, R.L., M.J. Siciliano, G.M. Adair, and R.M. Humphrey (1982) Structural and functional hemi and dizygous Chinese hamster chromosome 2 gene loci in CHO cells. Somat. Cell Genet. 8:413–422.

    Google Scholar 

  130. Steglich, C., and R. DeMars (1982) Mutations causing deficiency of APRT in fibroblasts cultured from human heterozygotes for mutant APRT alleles. Somat. Cell Genet. 8:115–141

    Google Scholar 

  131. Stocker, B.A.D. (1949) Measurement of rate of mutation of flagellar antigenic phage in Salmonella typhimurium. J. Hygiene 47:398–413.

    Google Scholar 

  132. Stoker, M. , and I. A. Macpherson (1964) Syrian hamster fibroblast cell line BHK21 and its derivatives.Nature203: 1355 – 1357.

    Google Scholar 

  133. Subak-Sharpe, H., R.R. Burk, and J.D. Pitts (1969) Metabolic cooperation between biochemically marked mammalian cells in tissue culture. J. Cell Sci. 4:353–367

    Google Scholar 

  134. Thacker, J. (1981) The chromosomes of a V79 Chinese hamster line and a mutant subline lacking HPRT activity. Cytogenet. Cell Genet. 29:16–25.

    Google Scholar 

  135. Thacker, J. , M. A. Stephens, and A. Stretch (1978) Mutation to ouabain resistance in Chinese hamster cells: Induction by ethyl methanesulfonate and lack of induction by ionizing radiation.Mutation Res. 51: 255 – 270.

    Google Scholar 

  136. Thacker, J. , P. G. Debenham, A. Stretch, and M. B. T. Webb (1983) The use of a cloned bacterial gene to study mutation in mammalian cells.Mutation Res. 111: 9 – 23.

    Google Scholar 

  137. Thompson, L. H. , and R. M. Baker (1973) Isolation of mutants of cultured mammalian cells, InMethods in Cell Biology, D. M. Prescott, Ed. , Academic Press, New York, Vol. 6, pp. 209 – 281.

    Google Scholar 

  138. Thompson, L.H., J.S. Rubin, J.E. Cleaver, G.F. Whitmore, and K. Brookman (1980) A screening method for isolating DNA repair-deficient mutants of CHO cells. Somat. Cell Genet. 6:391–405.

    Google Scholar 

  139. Thompson, L.H., D.B. Busch, K. Brookman, C.L. Mooney, and D.A. Glaser (1981) Genetic diversity of UV-sensitive DNA repair mutants of Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 78:3734–3737.

    Google Scholar 

  140. Tong, C. , and G. M. Williams (1980) Definition of conditions for the detection of genotoxic chemicals in the adult rat– liver epithelial cell/hypoxanthine-guanine phosphoribosyl transferase (ARL/HGPRT) mutagenesis assay.Mutation Res. 74: 19.

    Google Scholar 

  141. Trosko, J.E., and C.C. Chang (1980) An integrative hypothesis linking cancer, diabetes and atherosclerosis. The role of mutations and epigenetic changes. Med. Hypotheses 6:455–468.

    Google Scholar 

  142. . van Diggelen, O.P., T.F. Donahue, and S.I. Shin (1979) Basis for differential cellular sensitivity to 8-azaguanine and 6- thioguanine. J. Cell. Physiol. 98:59-72

    Google Scholar 

  143. van Zeeland, A. A. , M. C. E. van Diggelen, and J. W. I. M. Simons (1972) The role of metabolic cooperation in selection of hypoxanthine-guanine phosphoribosyltransferase (HG–PRT)-deficient mutants from diploid mammalian cell strains.Mutation Res. 14: 355 – 363.

    Google Scholar 

  144. van Zeeland, A. A. , and J. W. I. M. Simons (1975) The effect of calf serum on the toxicity of 8–azaguanine.Mutation Res. 27: 135 – 138.

    Google Scholar 

  145. van Zeeland, A. A. , and J. W. I. M. Simons (1976) Linear dose-response relationships after prolonged expression times in V79 Chinese hamster cells.Mutation Res. 35: 129 – 138.

    Google Scholar 

  146. Warren, S.T., R.A. Schultz, C.-C. Chang, M.H. Wade, and J.E. Trosko (1981) Elevated spontaneous mutation rate in Bloom syndrome fibroblasts. Proc. Natl. Acad. Sci. USA 78:3133–3137.

    Google Scholar 

  147. Weinburg, G., Ullman, B., and Martin, D.W., Jr. (1981) Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc. Natl. Acad. Sci. USA 78:2447–2451.

    Google Scholar 

  148. Weymouth, L.A., and L.A. Loeb (1978) Mutagenesis during in vitro DNA synthesis. Proc. Natl. Acad. Sci. USA 75:1924–1928

    Google Scholar 

  149. Wierenga, R. K. , and W. G. J. Hoi (1983) Predicted nucleotide-binding properties of p21 protein and its cancer–associated variant.Nature302: 842 – 844.

    Google Scholar 

  150. Wigley, C.B., R.F. Newbold, J. Ames, and P. Brookes (1979) Cel-mediated mutagenesis in cultured Chinese hamster cells by polycyclic hydrocarbons: Mutagenicity and DNA reaction related to carcinogenicity in a series of compounds. Intern. J. Cancer 23:691–696.

    Google Scholar 

  151. Wilson, J.M., B.W. Baugher, L. Landa, and W.N. Kelley (1981) Human hypoxanthine-guanine phosphoribosyltransferase: Purification and characterization of mutant forms of the enzyme. J. Biol. Chem. 256:10306–10312

    Google Scholar 

  152. Wilson, J.M., B.W. Baugher, P.M. Mattes, P.E. Daddona, and W.N. Kelley (1982a) Human hypoxanthine-guanine phosphoribosyltransferase. Demonstration of structural variants in lymphoblastoid cells derived from patients with a deficiency of the enzyme. J. Clin. Invest. 69:706–715.

    Google Scholar 

  153. Wilson, J.M., G.E. Tarr, W.C. Mahoney, and W.N. Kelley (1982b) Human hypoxanthine-guanine phosphoribosy-transferase: Complete amino acid sequence of the erythrocyte enzyme. J. Biol. Chem. 257:10978–10985

    Google Scholar 

  154. Wilson, J.M., L.E. Landa, R. Kobayashi, and W.N. Kelley (1982c) Human hypoxanthine-guanine phosphoribosyl-transferase: Tryptic peptides and posttranslational modifications of the erythrocyte enzymes. J. Biol. Chem. 257:14830–14834

    Google Scholar 

  155. Wilson, J.M., and W.N. Kelley (1983) Molecular basis of hypoxanthine-guanine phosphoribosyl transferase deficiency in a patient with Lesch-Nyhan syndrome. J. Clin. Invest. 71:1331–1335

    Google Scholar 

  156. Wilson, J.M., G.E. Tarr, and W.N. Kelley (1983a) Human hypoxanthine (guanine) phosphoribosyltransferase: An amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc. Natl. Acad. Sci. USA 80:870–873.

    Google Scholar 

  157. Wilson, J. M. , R. Kobayashi, I. H. Fox, and W. N. Kelley (1983b) Molecular abnormality in a mutant form of the enzyme hypoxanthine-guanine phosphoribosyltransf erase (HPRTToronto) J. Biol. Chem. 258: 6458 – 6460.

    Google Scholar 

  158. Wolf, S. F. , and B. R. Migeon (1982) Studies of X chromosome DNA methylation in normal human cells.Nature295: 667 – 671.

    Google Scholar 

  159. Yotti, L. P. , C. C. Chang, and J. E. Trosko (1979) Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter.Science206: 1089 – 1091.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Chu, E.H.Y., Li, IC., Fu, J. (1984). Mutagenesis Studies with Cultured Mammalian Cells: Problems and Prospects. In: Chu, E.H.Y., Generoso, W.M. (eds) Mutation, Cancer, and Malformation. Environmental Science Research, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2399-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2399-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9463-4

  • Online ISBN: 978-1-4613-2399-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics