Skip to main content

Polymer Properties Associated with Calcification of Cardiovascular Devices

  • Chapter
Calcium in Biological Systems
  • 155 Accesses

Abstract

Nucleation and growth of calcium phosphate crystals on blood pumps designed to assist or replace the natural heart is a limiting factor in the long-term survival of experimental animals. This phenomenon, first reported by Olsen et al. [24] in 1975, is an acknowledged problem in all cardiovascular implant centers with routine animal survival times greater than 100 days[8]. The exact cause of the deposition of calcium phosphate, crystallization, and growth is not known, but several factors have been identified as important participants in the process. These factors will be discussed in some detail below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allport, D. C.; Mohajer, A. A. Property-structure relationships in polyurethane block copolymers. In: Block Copolymers, D. C. Allport and W. H. James, eds., New York, Applied Science Publishers, 1973. p. 443.

    Google Scholar 

  2. Anderson, H. C. Matrix vesicle calcificationFed. Proc. 35: 105–108, 1976.

    CAS  Google Scholar 

  3. Anderson, H. C. Normal and abnormal mineralization in mammals. Trans. Am. Soc. Artif. InternOrgans 27: 702–708, 1981.

    CAS  Google Scholar 

  4. Boskey, A. L.; Posner, A. S. The role of synthetic and bone extracted Ca-phospholipid-P04 complexes in hydroxyapatite formationCalcif; Tissue Res 23: 251–258, 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Carmen, R.; Mutha, S. C. Lipid absorption by silicone rubber heart valve poppets—In vivo and in vitro resultsJ. Biomed. Mater. Res. 6: 327–346, 1972.

    Article  PubMed  CAS  Google Scholar 

  6. Cerveny, L.; Sprincl, L. The calcification of poly(glycol methacrylate) gel in experimental and clinical practicePolym. Med. 11: 71–77, 1981.

    CAS  Google Scholar 

  7. Chvapil, M. Development of degenerative changes in relation to the porosity of implanted vessel prosthesis: Role of diffusion, O2, metabolic shadows. In: Connective Tissue and Aging, Volume 1, H. G. Vogel, ed., Amsterdam, Excerpta Medica, 1973.

    Google Scholar 

  8. Coleman, D. L. Mineralization of blood pump bladdersTrans. Am. Soc. Artif Intern Organs 27: 708–713, 1981.

    CAS  Google Scholar 

  9. Coleman, D. L., Lim, D.; Kessler, T.; Andrade, J. D. Calcification of nontextured implantable blood pumpsTrans. Am. Soc. Artif. Intern. Organs 27: 97–103, 1981.

    PubMed  CAS  Google Scholar 

  10. Coleman, D. L.; Gregonis, D. E.; Andrade, J. D. Blood-materials interactions: The minimum interfacial free energy and the optimum polar/apolar ratio hypothesesJ. Biomed. Mater. Res. 16: 381–398, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Deck, J. D.; Thubrikar, M.; Nolan, S. P.; Aouad, J. Role of mechanical stress in calcification of bioprostheses. In: Proceedings of the Second International Symposium on Cardiac Bioprostheses, L. H. Cohn and V. Gallucci, eds., New York, York Medical Books, 1982, pp. 293–305.

    Google Scholar 

  12. Dong, D, E.; Andrade, J. D.; Colemen, D. L. Low density lipoprotein (LDL) adsorption to cardiovascular implant materialsACS Polym. Prepr. 23: 40–42, 1983.

    Google Scholar 

  13. Garside, J. Nucleation. In: Biological Mineralization and Demoralization, G. H. Nancollas, ed., Berlin, Springer-Verlag, 1982, pp. 23–35.

    Google Scholar 

  14. Gregonis, D. E.; Chen, C. M.; Andrade, J. D. The chemistry of some selected metacrylate hydrogels. In: Hydrogels for Medical and Related Applications, J. D. Andrade, ed., ACS Symposium Series 31, Washington, D.C., American Chemical Society, 1976, pp. 88–104.

    Google Scholar 

  15. Guidoin, R.; Gosselin, C.; Domurado, D.; Marois, M,; Levaillant, P. A.; Awad, J.; Rouleau, C., Levasseur, L. Dacron as arterial prosthetic material: Nature, properties, brands, fate and perspectivesBiomater. Med. Devices Artif. Organs 5: 177–203, 1977.

    PubMed  CAS  Google Scholar 

  16. Harasaki, H.; Gerrity, R.; Kiraly, R.; Jacobs, G.; Nose, Y. Calcification in bloodpumpsTrans. Am. Soc. Artif. Intern. Organs 25: 305–309, 1979.

    PubMed  CAS  Google Scholar 

  17. Hennig, E.; Keilbach, H.; Hoder, D.; Bucherl, E. S. Calcification of artificial heart values and artificial heartsProc. Eur. Soc. Artif Intern. Organs 8: 76–80, 1981.

    Google Scholar 

  18. Imai, Y.; Masuhara, E. Long-term in vivo studies of poly(2-hydroxyethyl methacrylate)J. Biomed. Mater. Res. 16: 609–617, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Kojima, K.; Imai, Y.; Masuhara, E. Reaction between polyvinyl alcohol) graft copolymers and tissueArtif. Qrgans Jpn. 3: 443–448, 1974.

    Google Scholar 

  20. Lian, J, B.; Levy, R. J.; Bernhard, W.; Szycher, M. LVAD mineralization and γ-carboxyglutamic acid containing proteins in normal and pathologically mineralized tissuesTrans. Am. Soc. Artif. Intern. Organs 27: 683 - 689, 1981.

    PubMed  CAS  Google Scholar 

  21. Long, M. M.; Urry, D. W. On the molecular mechanism of elastic fiber calcificationTrans. Am. Soc. Artif. Intern. Organs 27: 690–696, 1981.

    PubMed  CAS  Google Scholar 

  22. Nelsestuen, 0. L. Interactions of vitamin K-dependent proteins with calcium ions and phospholipid membranesFed. Proc. 37: 2621–2629, 1978.

    Google Scholar 

  23. Nose, Y.; Harasaki, H.; Murray, J. Mineralization of artificial surfaces that contact bloodTrans. Am. Soc. Arttf. Intern Organs 27: 714–719, 1981.

    CAS  Google Scholar 

  24. Olsen, D. B.; Unger, F.; Oster, H.; Lawson, J.; Kessler, T.; Kolff, W. J. Thrombus generation within the artificial heart, J. Thorac. Cardtovasc. Surg. 70: 248–255, 1975.

    CAS  Google Scholar 

  25. Parins, D. J.; McCoy, K. D.; Horvath, N.; Olson, R. WIn vivo degradation of a polyurethane: Pre-clinical studiesASTM Tech. Bull., in press.

    Google Scholar 

  26. Pokric, B.; Pucar, Z. Precipitation of calcium phosphates under conditions of double diffusion in collagen and gels of gelatin and agarCalcif. Tissue Int. 27: 171–176, 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Ratner, B. D.; Miller, I. F. Transport through crosslinked poly(2-hydroxyethyl methacrylate) hydrogel membranesJ. Biomed. Mater. Res. 7: 353–368, 1973.

    Article  PubMed  CAS  Google Scholar 

  28. Selman, S. H.; Rhodes, R. S.; Anderson, J. M.; DePalma, R. O.; Clowes, A. W. Atheromatous changes in expanded polytetrafluoroethylene graftsSurgery 87: 630–637, 1980.

    PubMed  CAS  Google Scholar 

  29. Shaw, D. JElectrophoresis, New York, Academic Press, 1969, p. 4.

    Google Scholar 

  30. Sheppard, B. L.; Bonnar, J. Scanning and transmission electron microscopy of material adherent to intrauterine contraceptive devices. Br. J. Obstet. Gynecol. 87: 155 - 159, 1980.

    CAS  Google Scholar 

  31. Spector, H.; Wigger, W. B.; Buse, M. O. Radionuclide bone imaging of femoral prostheses with porous coatingsClin. Orthop. 160: 242–249, 1981.

    PubMed  Google Scholar 

  32. Sprincl, L.; Kopecek, J.; Lim, D. Effect of the structure of poly(glycol monomethacrylate) gel on the calcification of implantsCalcif. Tissue Res. 13: 63–72, 1973.

    Article  CAS  Google Scholar 

  33. Taguchi, K.; Hasegawa, T.; Fukunaga, S.; Tagami, S.; Hironaka, T.; Iwase, K.; Otsubo, A.; Kajihara, H. An analysis of assisted heart implantation in calves for more than one yearTrans. Am. Soc. Artif. Intern. Organs 28: 584–588, 1982.

    PubMed  CAS  Google Scholar 

  34. Thomas, D. A. Morphology characterization of multiphase polymers by electron microscopyJ. Polym. Sci. Polym. Symp. 60: 189–200, 1977.

    CAS  Google Scholar 

  35. Tripathi, R. C.; Tripathi, B. J. The role of the lids in soft lens spoilageContactIntraocul. Lens Med. J. 7: 234–240, 1981.

    CAS  Google Scholar 

  36. Turner, S. A.; Bossart, M. I.; Milam, J. D.; Fuqua, J. M.; Igo, S. R.; McGee, M. G.; Frazier, O. H. Calcification in chronically-implanted blood pumps: Experimental results and review of the literatureTex. Heart Inst. J. 9: 195–205, 1982.

    PubMed  CAS  Google Scholar 

  37. Urry, D. W. Neutral sites for calcium ion binding to elastin and collagen: A charge neutralization theory for calcification and its relationship to atherosclerosisProc. Natl. Acad. Sci. USA 68: 810–814, 1971.

    Article  Google Scholar 

  38. van Noort, R.; Black, M. M.; Harris, B. Developments in the biomedical evaluation of silicone rubberJ. Mater. Sci. 14: 197–204. 1979.

    Article  Google Scholar 

  39. Van Wagenen, R. A.; Coleman, D. L.; King, R. N.; Triolo, P.; Brostrom, L.; Smith, L. M.; Gregonis, D. E.; Andrade, J. D. Streaming potential investigations: Polymer thin filmsJ. Colloid Interface Sci. 84: 155–162, 1981.

    Article  Google Scholar 

  40. Vogel, J. J.; Boyan-Salyers, B.; Campbell, M. M. Protein-phospholipid interactions in biologic calcificationMetab. BoneDis. Relat. Res. 1: 149–153, 1978.

    Article  CAS  Google Scholar 

  41. Voldrich, Z.; Tomanek, Z.; Vacik, J.; Kopeck, J. Long-term experience with the poly(glycol monomethacrylate) gel in plastic operations of the noseJ. Biomed. Mater. Res. 9: 675–685, 1975.

    Article  PubMed  CAS  Google Scholar 

  42. Wesolowski, S. A.; Fries, C. C.; Karlson, K. E.; De Bakey, M.; Sawyer, P. N. Porosity: Primary determinant of utimate fate of synthetic vascular graftsSurgery 10: 91–96, 1961.

    Google Scholar 

  43. Williams, D. F. Review: Biodegradation of surgical polymersJ. Mater. Sci. 17: 1233–1246, 1982.

    Article  CAS  Google Scholar 

  44. Woodward, S. C. Mineralization of connective tissue surrounding implanted devicesTrans. Am. Soc. Arty. Intern. Organs 27: 697–702, 1981.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Coleman, D.L., Hsu, HC., Dong, D.E., Olsen, D.B. (1985). Polymer Properties Associated with Calcification of Cardiovascular Devices. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_71

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_71

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics