Skip to main content

Sedative-Hypnotic Drugs and Synaptosomal Calcium Transport

  • Chapter
Calcium in Biological Systems

Abstract

Sedative-hypnotic drugs exert potent actions within the synapse and on neuronal cell bodies in the central nervous system. Barbiturates block synaptic transmission at concentrations within their anesthetic range [12,14], whereas much larger concentrations are required to suppress axonal conduction. Both pre and postsynaptic functions are altered by low barbiturate concentrations. Postsynaptically, barbiturates depress excitatory postsynaptic potentials [2,21,22] and enhance postsynaptic inhibition [10,24]. Presynaptically, anesthetic concentrations of pentobarbital decrease neurotransmitter release from cerebral cortical slices [11] and brain prisms from different brain regions [26]. With regard to the effects of sedative-hypnotic drugs on neuronal cell bodies, barbiturates inhibit voltage-dependent calcium uptake [8] and facilitate chloride conductance [10] in neuronal cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, P.F. Transport and metabolism of calcium ions in nerve. Prog. Biophys. Mol. Biol. 24: 177–223, 1972

    Article  CAS  Google Scholar 

  2. Barker, J L.; Gainer, H. Pentobarbital: Selective depression of excitatory postsynaptic potentials. Science 182: 720–722, 1973

    Article  PubMed  CAS  Google Scholar 

  3. Blaustein, M. P.; Ector, A. C. Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro. Mol. Pharmacol. 11: 369–378, 1975.

    PubMed  CAS  Google Scholar 

  4. Bolton, T. B. Mechanism of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59: 606–718, 1979.

    Google Scholar 

  5. Brazier, M. The electrophysiological effects of barbiturates on the brain. In: Physiological Pharmacology, Volume 1, W. Root and F. Hoffman, eds., New York Academic Press 1963, pp. 219–238.

    Google Scholar 

  6. Elrod, S. V.; Leslie, S. W. Acute and chronic effects of barbiturates on depolarization-induced calcium influx into synaptosomes from rat brain regions. J. Pharmacol. Exp. Ther. 212: 131–136, 1980.

    CAS  Google Scholar 

  7. Gripenberg, J.; Heinonen, E.; Jansson, S.-E. Uptake of radiocalcium by nerve endings isolated from rat brain: Kinetic studies. Br. J. Pharmacol. 71: 265–271, 1980.

    PubMed  CAS  Google Scholar 

  8. Heyer, E. J.; MacDonald, R. L. Barbiturate reduction of calcium-dependent action potentials: Correlation with anesthetic action. Brain Res. 236: 157–171, 1982.

    CAS  Google Scholar 

  9. Hood, W. F.; Harris, R. A. Effects of depressant drugs and sulfhydryl reagents on the transport of calcium by isolated nerve endings. Biochem. Pharmacol. 29: 957–959, 1980.

    CAS  Google Scholar 

  10. Huang, L.-Y. M.; Barker, J. L. Pentobarbital: Stereospecific actions of (+) and (-) isomers revealed on cultured mammalian neurons. Science 207: 195–197, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Kalant, H.; Grose, W. Effects of ethanol and pentobarbital on release of acetylcholine from cerebral cortex slices. J. Pharmacol. Exp. Ther. 158: 386–393, 1967.

    CAS  Google Scholar 

  12. King, E. E. Differential action of anesthetics and interneuron depressants upon EEG arousal and recruitment responses. J. Pharmacol. Exp. Ther. 116: 404–417, 1956.

    Google Scholar 

  13. Kostyuk, P. G. Calcium ionic channels in electrically excitable membranes. Neuroscience 5: 945–959, 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Larrabee, M.; Posternak, J. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J. Neurophysiol. 15: 91–114, 1952.

    CAS  Google Scholar 

  15. Leslie, S. W.; Elrod, S. V.; Coleman, R.; Belknap, J. K. Tolerance to barbiturate and chlorpromazine-induced central nervous system sedation Involvement of calcium mediated stimulus-secretion coupling. Biochem. Pharmacol. 28: 1437–1440, 1979.

    Article  PubMed  CAS  Google Scholar 

  16. Leslie, S. W.; Friedman, M. B.; Wilcox, R. E.; Elrod, S. V. Acute and chronic effects of barbiturates on depolarization-induced calcium influx into rat synaptosomes. Brain Res. 185: 409–417, 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Leslie, S. W.; Friedman, M. B.; Coleman, R. R. Effects of chlordiazepoxide on depolarization-induced calcium influx into synaptosomes. Biochem. Pharmacol. 29: 2439–2443, 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Leslie, S. W.; Barr, E.; Chandler, J.; Farrar, R. P. Inhibition of fast- and slow-phase depolarization-dependent synaptosomal calcium uptake by ethanol. J. Pharmacol. Exp. Ther. 225: 571–575, 1983.

    CAS  Google Scholar 

  19. Miller, S. S.; Goldman, M. E.; Erickson, C. K; Shorey, R. L. Induction of physical dependence on and tolerance to ethanol in rats fed a nutritionally complete and balanced liquid diet. Psychopharmacology 68: 55–59, 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Nachshen, D. A.; Blaustein, M. P. Some properties of potassium-stimulated calcium influx in presynaptic nerve endings. J. Gen Physiol. 76: 709–728, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Nicoll, R. A. Pentobarbital: Differential postsynaptic actions on sympathetic ganglion cells. Science 199: 451–452, 1978.

    Article  PubMed  CAS  Google Scholar 

  22. Nicoll, R. A.; Iwamoto, E. T. Action of pentobarbital on sympathetic ganglion cells. J. Neurophysiol. 41: 977–985, 1978.

    PubMed  CAS  Google Scholar 

  23. Putney, J. W., Jr. Stimulus-permeability coupling Role of calcium in the receptor regulation of membrane permeability. Pharmacol. Rev. 30: 209–245, 1978.

    PubMed  CAS  Google Scholar 

  24. Ransom, B. R.; Barker, J. L. Pentobarbital selectively enhances GABA-mediated post-synaptic inhibition in tissue cultured mouse spinal neurons. Brain Res. 114: 530–535, 1976.

    Article  PubMed  CAS  Google Scholar 

  25. Reuter, H. Divalent cations as charge carriers in excitable membranes. Prog. Biophys. Mol. Biol. 26: 1–43, 1973.

    Google Scholar 

  26. Richter, J. A.; Waller, M. B. Effects of pentobarbital on the regulation of acetylcholine content and release in different regions of rat brain. Biochem. Pharmacol. 26: 609–615, 1977.

    CAS  Google Scholar 

  27. Rosenberger, L. B.; Triggle, D. J. Calcium, calcium translocation and specific calcium antagonists. In: Calcium in Drug Action, G. B. Weiss, ed., New York, Plenum Press, 1978, p. 3.

    Google Scholar 

  28. Stokes, J. A.; Harris, R. A. Alcohols and synaptosomal calcium transport. Mol. Pharmacol. 22: 99–104, 1982.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Leslie, S.W., Barn, E.M., Chandler, L.J., Daniell, L.C. (1985). Sedative-Hypnotic Drugs and Synaptosomal Calcium Transport. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics