Skip to main content

Sub-MEPPs, Skew-MEPPs and the Subunit Hypothesis of Quantal Transmitter Release at the Neuromuscular Junction

  • Chapter

Part of the book series: Topics in the Neurosciences ((TNSC,volume 1))

Abstract

sub-MEPPs, skew-MEPPs and bell-MEPPs. In 1973 we reported that there is a class of small MEPPs (sub-MEPPs) at the normal adult frog neuromuscular junction and that the normally low percentage of these small MEPPs is temporarily increased after a heat challenge or nerve stimulation (Gross and Kriebel, 1973; Kriebel and Gross, 1974; Bevan, 1976) (Fig. 1) or with focal depolarization (Cooke and Quastel, 1973). Sub-MEPPs are absent with curare (Cooke and Quastel, 1973) and potentiated by eserine similarly to the larger MEPPs that were initially described by Fatt and Katz (1952). The larger MEPPs are termed bell-MEPPs because the amplitude distribution is bell-shaped (Fig. 2). Since both sub-MEPPs and the larger MEPPs are found in the normal preparation, the term normal-MEPP or classical-MEPP is inaccurate. The sub-MEPPs form a distinct class separate from the bell-MEPPs as indicated by the discontinuity in the profile of the MEPP amplitude histogram. In the frog neuromuscular junction, the small MEPP amplitudes usually form a bell distribution and are termed sub-MEPPs or s-MEPPs. However, in the mouse neuromuscular junction, the class of small MEPPs shows an overall skew distribution with a mode near the noise level (hence termed skew-MEPPs ; term from Harris and Miledi, 1971). The skew class of MEPPs may show integral peaks providing that enough MEPPs are present in each histobar and if adequate resolving power of the histogram is used (i.e., bins between peaks; Fig. 2; Matteson et al., 1979). When the skew-class shows multiple peaks, the first peak is the sub-MEPP (s-MEPP) and its modal value is the same as that of the overall skew-class. The skew-class thus includes the sub-MEPPS (s-MEPPs). Doublet MEPPs (two beli-MEPPs, Kriebel and Stolper, 1975), are not discussed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augustine, G.J. and H. Levitan. Neurotransmitter release and nerve terminal morphology at the frog neuromuscular junction by the dye Erythrosin B. J. Physiol. 334:47–63, 1983.

    PubMed  CAS  Google Scholar 

  • Bevan, S. Sub-miniature end-plate potentials at untreated frog neuromuscular junctions. J. Physiol. 258: 145–155, 1976.

    PubMed  CAS  Google Scholar 

  • Birks, R., B. Katz and R. Miledi. Physiological and structural changes at the amphibian myoneural junction in the course of nerve degeneration. J. Physiol. 150: 145–168, 1960.

    PubMed  CAS  Google Scholar 

  • Boyd, I.A. and A.R. Martin. The end-plate potential in mammalian muscle. J. Physiol. 132: 74–91, 1956.

    PubMed  CAS  Google Scholar 

  • Carlson, C.G., M.E. Kriebel and CG. Muniak. The effect of temperature on MEPP amplitude distributions in the mouse diaphragm. Neuroscience 7: 2537–2549, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Colméus, C., S. Gomez, J. Molgó and S. Thesleff. Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botulinum toxin poisoned mammalian neuromuscular junctions. Proc. R. Soc. Lond. B 215; 63–74, 1982.

    Article  PubMed  Google Scholar 

  • Cooke, J.D. and D.M.J. Quastel. Transmitter release by mammalian motor nerve terminals in response to focal polarization. J. Physiol. 228: 377–405, 1973.

    PubMed  CAS  Google Scholar 

  • Cull-Candy, S.G., Lundh, H., Thesleff, S. Effects of botulinum toxin on neuromuscular transmission in the rat. J. Physiol. 260: 177–203, 1976.

    PubMed  CAS  Google Scholar 

  • del Castillo, J. and B. Katz. La base ‘quantale’ de la transmission neuro-musculaire. In: ‘Microphysiologie Comparée des éléments excitables’. Coll. Internat. C.N.R.S. Paris No. 67: 245–258, 1957.

    Google Scholar 

  • Dennis, M.J. and R. Miledi. Non-transmitting neuromuscular junctions during an early stage of end-plate reinnervation. J. Physiol. 239: 553–570, 1974a.

    PubMed  CAS  Google Scholar 

  • Dennis, M.J. and R. Miledi. Characteristics of transmitter release at regenerating frog neuromuscular junctions. J. Physiol. 239: 571–594, 1974b.

    PubMed  CAS  Google Scholar 

  • Duchen, L.W. and D.E. Tonge. The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plate in slow and fast skeletal muscle of the mouse. J. Physiol. 228: 157–172, 1973.

    PubMed  CAS  Google Scholar 

  • Erxleben, C., G. Carlson and M.E. Kriebel. Studies of miniature endplate currents show that the quantum of release is composed of subunits. Neuroscience Abstracts, 1983.

    Google Scholar 

  • Erxleben, C. and M.E. Kriebel. Characteristics of miniature and sub-miniature endplate currents at the mouse diaphragm endplate. Naunyn-Schmiedeberg’s Arch, of Pharmacology. Suppl. to Vol. 322, R. 62, 1983.

    Google Scholar 

  • Fatt, P. and B. Katz. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117: 109–128, 1952.

    PubMed  CAS  Google Scholar 

  • Gross, C.E. and M.E. Kriebel. Multimodal distribution of MEPP amplitudes: the changing distribution with dener-vation, nerve stimulation and high frequencies of spontaneous release. J. Gen. Physiol. 62: 658–659, 1973.

    Google Scholar 

  • Hanna, R. and M.E. Kriebel. Relationship between synaptic vesicles and miniature endplate potentials in adult and neonatal mouse diaphragm. Neuroscience Abstracts, 1983.

    Google Scholar 

  • Harris, A.J. and R. Miledi. The effect of type D botulinum toxin on frog neuromuscular junction. J. Physiol. 217: 497–515, 1971.

    PubMed  CAS  Google Scholar 

  • Heuser, J. and R. Miledi. Effect of lanthanum ions on function and structure of frog neuromuscular junctions. Proc. R. Soc. Lond. B 179: 247–260, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J.E., T.S. Reese, M.J. Dennis, Y. Jan, L. Jan and L. Evans. Synaptic vesicle exocytosis captured by quick freezing and correlated with quastal transmitter release. 0. Cell Biol. 81: 275–300, 1979.

    Article  CAS  Google Scholar 

  • Heuser, J.E., T.S. Reese and D.M.D. Landis. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J. Neurocytology 3: 109–131, 1974.

    Article  CAS  Google Scholar 

  • Katz, B. The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc. R. Soc. B 155: 455–477, 1962.

    Article  Google Scholar 

  • Katz, B. “Prologue”, In: Synapses, eds. G.A. Cottrell and P.N.R. Usherwood. Academic Press. 1977. Chapter 1, pp. 1–5.

    Google Scholar 

  • Katz, B. and R. Miledi. Estimates of quantal content during ‘chemical potentiation’ of transmitter relese. Proc. R. Soc. Lond. B 205; 369–378, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Katz, B. and S. Thesleff. On the factors which determine the amplitude of the ‘miniature end-plate potential’. J. Physiol. 137: 267–278, 1957.

    PubMed  CAS  Google Scholar 

  • Kelly, S.S. and N. Robbins. Bimodal miniature and evoked end-plate potentials in adult mouse neuromuscular junctions. J. Physiol. 346; 353–363, 1984.

    PubMed  CAS  Google Scholar 

  • Kidokoro, Y. Two types of miniature endplate potentials in Xenopus nerve-muscle cultures. Neuroscience Research 1: 157–170, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H. and W. Van der Kloot. Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction. J. Physiol. 259: 177–198, 1976.

    PubMed  CAS  Google Scholar 

  • Kriebel, M.E. Small mode miniature endplate potentials are increased and evoked in fatigued preparations and in high Mg2+ saline. Brain Research 148: 381–388, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Kriebel, M.E. and E. Florey. Effect of lanthanum ions on the amplitude distributions of miniature endplate potentials and on synaptic vesicles in frog neuromuscular junctions. Neuroscience 9: 535–547, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Kriebel, M.E. and C.E. Gross. Multimodal distribution of frog miniature endplate potentials in adult, denervated, and tadpole leg muscle. J. Gen. Physiol. 64: 85–103, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Kriebel, M.E., R.B. Hanna and G.D. Pappas. Spontaneous potentials and fine structure of identified frog denervated neuromuscular junctions. Neuroscience 5; 97–108, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Kriebel, M.E., F. Llados and C.G. Carlson. Effect of the Ca++ ionophore X-537A and a heat challenge on the distribution of mouse MEPP amplitude histograms. J. Physiol. Paris 76; 435–441, 1980.

    CAS  Google Scholar 

  • Kriebel, M.E., F. Llados and D.R. Matteson. Spontaneous subminiature end-plate potentials in mouse diaphragm muscle: evidence for synchronous release. J. Physiol. 262: 553–581, 1976.

    PubMed  CAS  Google Scholar 

  • Kriebel, M.E., F. Llados and D.R. Matteson. Histograms of the unitary evoked potential of the mouse diaphragm show multiple peaks. J. Physiol. 322: 211–222, 1982.

    PubMed  CAS  Google Scholar 

  • Kriebel, M.E. and D.R. Stolper. Non-Poisson distribution in time of small-and large-mode miniature end-plate potentials. Am. J. Physiol. 229: 1321–1329, 1975.

    PubMed  CAS  Google Scholar 

  • Land, B.R., E.E. Salpeter, M.M. Salpeter. Acetylcholine receptor site density affects the rising phase of miniature endplate currents. Proc. Natl. Acad. Sci. U.S.A. 77(6): 3736–3740, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Llados, F., M.E. Kriebel and D.R. Matteson. ß-Bungarotoxin preferentially blocks one class of miniature endplate potentials. Brain Research 192; 598–602, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Magleby, K.L. and D.C. Miller. Is the quantum of transmitter release composed of subunits A critical analysis in the mouse and frog. J. Physiol. 311: 267–287, 1981.

    PubMed  CAS  Google Scholar 

  • Magleby, K.L. and M.M. Weinstock. Nickel and calcium ions modify the characteristics of the acetylcholine receptor-channel complex at the frog neuromuscular junction. J. Physiol. 299: 203–218, 1980.

    PubMed  CAS  Google Scholar 

  • Matteson, D.R., M.E. Kriebel and F. Llados. A statistical model supports the subunit hypothesis of quantal release. Neuroscience Letters 15: 147–152, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Matteson, D.R., F. Llados and M.E. Kriebel. A statistical model indicates that miniature endplate potentials and unitary evoked endplate potentials are composed of subunits. J. Theort. Biol. 90: 337–363, 1981.

    Article  CAS  Google Scholar 

  • Matthews-Bellinger, J.A. and M.M. Salpeter. Fine structural distribution of acetylcholine receptors at developing mouse neuromuscular junctions. J. Neuroscience 3: 644–657, 1983.

    CAS  Google Scholar 

  • McLarnon, J.G. and D.M.J. Quastel. Postsynaptic effects of magnesium and calcium at the mouse neuromuscular junction. J. Neuroscience 3: 1626–1633, 1983.

    CAS  Google Scholar 

  • Molgó, J. and S. Thesleff. 4-Aminoquinoline-induced ‘giant’ miniature endplate potentials at mammalian neuromuscular junctions. Proc. R. Soc. Lond. B 214: 229–247, 1982.

    Article  PubMed  Google Scholar 

  • Muniak, C.G., M.E. Kriebel and CG. Carlson. Changes in MEPP and EPP amplitude distributions in the mouse diaphragm during synapse formation and degeneration. Devel. Brain Research 5: 123–138, 1982.

    Article  Google Scholar 

  • Sellin, L.C. and S. Thesleff. Pre-and post-synaptic actions of botulinum toxin at the rat neuromuscular junction. J. Physiol. Lond. 317: 487–495, 1981.

    PubMed  CAS  Google Scholar 

  • Thesleff, S. Supersensitivity of skeletal muscle produced by botulinum toxin. J. Physiol. 151: 598–607, 1960.

    PubMed  CAS  Google Scholar 

  • Thesleff, S., J. Molgö and H. Lundh. Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous quantal transmitter release at the rat neuromuscular junction. Brain Research 264: 89–97, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Tonge, D.A. Physiological characteristics of re-innervation of skeletal muscle in the mouse. J. Physiol. 241: 141–153, 1974.

    PubMed  CAS  Google Scholar 

  • Vautrin, J. et J. Mambrini. Caractéristiques du potentiel unitaire de plaque motrice de la grenouille. J. Physiol., Paris 77: 999–1010, 1981.

    CAS  Google Scholar 

  • Wernig, A. and I. Motelica-Heino. On the presynaptic nature of the quantal subunit. Neuroscience Letters 8: 231–234, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Wernig, A. and H. Stirner. Quantum amplitude distributions point to functional unity of the synaptic ‘active zone’. Nature, Lond. 269: 820–822, 1977.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Kriebel, M.E., Erxleben, C. (1986). Sub-MEPPs, Skew-MEPPs and the Subunit Hypothesis of Quantal Transmitter Release at the Neuromuscular Junction. In: Rahamimoff, R., Katz, B. (eds) Calcium, Neuronal Function and Transmitter Release. Topics in the Neurosciences, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2307-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2307-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9420-7

  • Online ISBN: 978-1-4613-2307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics