Skip to main content

Molecular Emission Spectra from Shock-Decomposed Benzene

  • Chapter
Shock Waves in Condensed Matter

Abstract

Benzene decomposes when shocked to pressures greater than 13 GPa. However, few products of the decomposition reactions have been identified in situ or by recovery methods. This paper reports the detection by time-resolved (50-to-120 nsec) chemiluminescence spectroscopy of excited molecular products of the decomposition of benzene at pressures from 24 to 63 GPa. Strong spectral bands characteristic of C2 are readily identified among other features and a gray-body background. The dependence of the spectra on shock parameters are breifly discussed in terms of known decomposition mechanisms of highly excited benzene.

Support and equipment provided by LLNL IGPP 84–19, NASA NAGW-104, and NSF DMR80-24620 are gratefully acknowledged.

Work performed under the auspices of the U.S. Department of Energy under contract #W-7405-Eng-48, with partial support from LLNL IGPP 84–19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, G.E. Duvall et al. “Shock Compression Chemistry in Materials Synthesis and Processing” (National Academy Press, Washington, 1985) and references cited therein.

    Google Scholar 

  2. See, for example, L.V. Barabe, A.N. Dremin, S.V. Pershin, and V.V. Yakovlev, Shock-compression polymerization of hard-topolymerize organic compounds, Fizika Goreniya i Vzryva 5:528 (1969) and references cited therein.

    Google Scholar 

  3. J.H. Kiefer, L.J. Mizerka, M.R. Patel and H.-C. Wei, A shock tube investigation of major pathways in the high-temperature pyrolysis of benzene, J. Phys. Chem. 89: 2013 (1985).

    Article  Google Scholar 

  4. R.D. Smith, and A.L. Johnson, Mass spectrometric study of the high temperature chemistry of benzene, Combust. Flame 51: 1 (1983).

    Article  Google Scholar 

  5. R.S. Slysh and C.R. Kinney, Some kinetics of the carbonization of benzene, acetylene, and diacetylene at 1200°, J. Phys. Chem. 65: 1044 (1961).

    Article  Google Scholar 

  6. S. Block, C.E. Weir, and G.J. Piermarini, Polymorphism in benzene, naphthalene, and anthracene at high pressure, Science 169: 586 (1970).

    Article  Google Scholar 

  7. J. Akella and G.C. Kennedy, Phase diagram of benzene to 35 kbar, J. Chem. Phys. 55: 793 (1971).

    Article  Google Scholar 

  8. R.H. Wentorf, Jr., The behavior of some carbonaceous materials at very high pressures and high temperatures, J. Phys. Chem. 69: 3063 (1965).

    Article  Google Scholar 

  9. M. Nicol, M.L. Johnson, and N.C. Holmes, (to be published).

    Google Scholar 

  10. W.J. Nellis, F.H. Ree, R.J. Trainor, A.C. Mitchell, and M.B. Boslough, Equation of state and optical luminosity of benzene, polybutene, and polyethylene shocked to 210 GPa (2.1 Mbar), J. Chem. Phys. 80: 2789 (1984).

    Article  Google Scholar 

  11. G.A. Lyzenga, T.J. Ahrens, W.J. Nellis, and A.C. Mitchell, The temperature of shock-compressed water, J. Chem. Phys. 76: 6282 (1982).

    Article  Google Scholar 

  12. Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

    Google Scholar 

  13. A.C. Mitchell and W.J. Nellis, Diagnostic system of the Lawrence Livermore National Laboratory two-stage light-gas gun, Rev. Sci. Instr. 52: 347 (1981).

    Article  Google Scholar 

  14. R.W.B. Pearse and A.G. Gaydon, “The Identification of Molecular Spectra” ( Chapman & Hall, London, 1965 ) pp. 94–127.

    Google Scholar 

  15. K.D. Bayes, private communication.

    Google Scholar 

  16. W.R.M. Graham, K.I. Dismukes, and W. Weltner, Jr., C2H radical: 13C hyperfine interaction and optical spectrum, J. Chem. Phys. 60: 3817 (1974).

    Article  Google Scholar 

  17. K.I. Dismukes, W.R.M. Graham, and W. Weltner, Optical and esr spectra of the C4H radical in rare gas matrices at 4 K, J. Mol. Spectr. 57: 127 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Johnson, M.L., Nicol, M., Holmes, N.C. (1986). Molecular Emission Spectra from Shock-Decomposed Benzene. In: Gupta, Y.M. (eds) Shock Waves in Condensed Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2207-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2207-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9296-8

  • Online ISBN: 978-1-4613-2207-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics