Skip to main content

Ion, Electron, and Proton Transport in Membranes: A Review of the Physical Processes Involved

  • Chapter
Modern Bioelectrochemistry

Abstract

The physical concepts and problems associated with the understanding of ionic, electronic, and protonic transport in membrane structures are discussed. Ion transport is intimately associated with the existence of a transmembrane potential, and the contributions that ion concentration gradients, membrane surface charges, and surface redox reactions may give to this are described, together with the physical features required of ion channels and pores. An understanding of the coupling of electron transport processes to proton motive forces is a central task for modern bioenergetics, and some of the factors involved are discussed, as well as the physical mechanisms that control electron and proton transport processes in membrane structures. Other topics included are the dielectric properties of biological electrolytes, electronic induction, and dipole interactions in proteins, and proton transport in water, ice, and model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. Hasseibach and H. Oetliker, “Energetics and Electrogenicity of the Sarcoplasmic Reticulum Calcium Pump,” Ann. Rev. Physiol. 45, 325–339 (1983).

    Article  Google Scholar 

  2. C. Tanford, “Mechanism of Free Energy Coupling in Active Transport,” Ann. Rev. Biochem. 52, 379–409 (1983).

    Article  CAS  Google Scholar 

  3. L. M. Amzel and P. O. Pedersen, “Proton ATPases: Structure and Mechanism,” Ann. Rev. Biochem. 52, 801–824 (1983).

    Article  CAS  Google Scholar 

  4. P. Mitchell, “Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-osmotic Type of Mechanism,” Nature 191, 144–148 (1961).

    Article  CAS  Google Scholar 

  5. P. Mitchell, “Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation,” Biol. Rev. 41, 445–502 (1966).

    Article  CAS  Google Scholar 

  6. P. Mitchell, “Compartmentation and Communication in Living Systems. Ligand Conduction: A General Catalytic Principle in Chemical, Osmotic and Chemiosmotic Reaction Systems,” Eur. J. Biochem. 95, 1–20 (1979).

    Article  CAS  Google Scholar 

  7. S. J. Ferguson and M. C. Sorgato, “Proton Electrochemical Gradients and Energy Transduction Processes,” Ann. Rev. Biochem. 51, 185–217 (1982).

    Article  CAS  Google Scholar 

  8. R. J. P. Williams, “Possible Functions of Chains of Catalysts,” J. Theor. Biol. 1, 1–13 (1961).

    Article  CAS  Google Scholar 

  9. R. J. P. Williams, “Proton-Driven Phosphorylation Reactions in Mitochondrial and Chloroplast Membranes,” FEBS Lett. 53, 123–125 (1975).

    Article  CAS  Google Scholar 

  10. R. J. P. Williams, “The Multifarious Couplings of Energy Transduction,” Biochim. Biophys. Acta. 505, 1–44 (1978).

    CAS  Google Scholar 

  11. D. B. Kell, “On the Functional Proton Current Pathway of Electron Transport Phosphorylation. An Electrodic View,” Biochim. Biophys. Acta. 549, 55–99 (1979).

    CAS  Google Scholar 

  12. D. B. Kell, D. J. Clarke, and J. G. Morris, “On Proton-Coupled Information Transfer along the Surface of Biological Membranes and the Mode of Action of Certain Colicins,” FEMS Microbiol. Lett. 11, 1–11 (1981).

    Article  CAS  Google Scholar 

  13. D. B. Kell and G. D. Hitchens, “Proton-Coupled Energy Transduction by Biological Membranes. Principles, Pathways and Praxis,” Faraday Discuss. Chem. Soc. 74, 377–388 (1982).

    Article  CAS  Google Scholar 

  14. E. Elul, “Fixed Charge in the Cell Membrane,” J. Physiol. 189, 351–365 (1967).

    CAS  Google Scholar 

  15. O. Aono and S. Ohki, “Origin of Resting Potential of Axon Membrane,” J. Theor. Biol. 37, 273–282 (1972).

    Article  CAS  Google Scholar 

  16. D. L. Gilbert and G. Ehrenstein, “Effect of Divalent Cations on Potassium Conductance of Squid Axons: Determination of Surface Charge,” Biophys. J. 9, 447–463 (1969).

    Article  CAS  Google Scholar 

  17. E. Rojas and I. Atwater, “An Experimental Approach to Determine Membrane Charges in Squid Giant Axon,” J. Gen. Physiol. 51, 131s–145s (1968).

    CAS  Google Scholar 

  18. J. R. Segal, “Surface Charge of Giant Axons of Squid and Lobster,” Biophys. J. 8, 470–489 (1968).

    Article  CAS  Google Scholar 

  19. S. Ohki, “Membrane Potential of Squid Axons: Comparison between the Goldman- Hodgkin-Katz Equation and the Diffusion/Surface Potential Equation,” in Charge and Field Effects in Biosystems (M. J. Allen and P. N. R. Usherwood, eds.), pp. 147–156, Abacus Press, Tunbridge Wells (1984).

    Google Scholar 

  20. A. Roos and W. F. Boran, “Intracellular pH,” Physiol. Rev. 61, 296–434 (1981).

    CAS  Google Scholar 

  21. J. Rothman and J. Lenard, “Membrane Asymmetry,” Science 195, 743–753 (1977).

    Article  CAS  Google Scholar 

  22. J. Barber, “Influence of Surface Charges on Thylakoid Structure and Function,” Ann. Rev. Plant Physiol. 33, 261–295 (1982).

    Article  CAS  Google Scholar 

  23. A. L. Hodgkin and B. Katz, “The Effect of Sodium Ions on the Electrical Activity of the Giant Axon of the Squid,” J. Physiol. 108, 37–77 (1949).

    CAS  Google Scholar 

  24. T. Teorell, “Transport Processes and Electrical Phenomena in Ionic Membranes,” Progr. Biophys. 3, 305–369 (1953).

    CAS  Google Scholar 

  25. S. Ohki, “Membrane Potential of Phospholipid Bilayer and Biological Membranes,” Progr. Surf. Membrane Sci. 10, 117–252 (1976).

    CAS  Google Scholar 

  26. D. C. Grahame, “The Electrical Double Layer and the Theory of Electrocapillarity,” Chem. Rev. 41, 441–501 (1947).

    Article  CAS  Google Scholar 

  27. R. H. Brown, “Membrane Surface Charge: Discrete and Uniform Modelling,” Progr. Biophys. Molec. Biol. 28, 343–370 (1974).

    Google Scholar 

  28. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Chap. 7, Plenum Press, New York (1970).

    Google Scholar 

  29. R. A. Robinson and R. M. Stokes, Electrolyte Solutions, Butterworth, London (1970).

    Google Scholar 

  30. C. T. Yerkes and G. T. Babcock, “Surface Charge Asymmetry and a Specific Calcium Ions Effect in Chloroplast Photosystem II,” Biochim. Biophys. Acta 634, 19–29 (1981).

    Article  CAS  Google Scholar 

  31. R. Pethig, P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent-Györgyi, “Interaction of the 2,6-dimethoxysemiquinone and Ascorbyl Free Radicals with Ehrlich Ascites Cells: A Probe of Cell Surface Charge,” Proc. Natl. Acad. Sci. USA 81, 2088–2091 (1984).

    Article  CAS  Google Scholar 

  32. M. A. Habib and J. O’M. Bockris, “Interpretation of Current-Potential Relationships across Biological Membranes,” J. Bioelectricity 1, 289–294 (1982).

    CAS  Google Scholar 

  33. R. Pethig, Dielectric and Electronic Properties of Biological Materials, Wiley, Chichester (1979).

    Google Scholar 

  34. R. Pethig, “Electronic Conduction in Biopolymers,” Electronic Conduction and Mechanoelectrical Transduction in Biological Materials (B. Lipinski, ed.), Marcel Dekker, New York (1982), pp. 1–98.

    Google Scholar 

  35. R. Pethig, “Biological Polymers,” in Noncrystalline Semiconductors (M. Pollak, ed.), CRC Press, Boca Raton (in press).

    Google Scholar 

  36. M. A. Habib and J. O’M. Bockris, Chapter 3, this volume.

    Google Scholar 

  37. J. B. Hasted, “Liquid Water: Dielectric Properties,” in Water: A Comprehensive Treatise (F. Franks, ed.), Vol. 1, pp. 255–309, Plenum, New York (1972).

    Google Scholar 

  38. S. Bone and R. Pethig, “Dielectric Studies of the Binding of Water to Lysozyme,” J. Mol. Biol. 157, 571–575 (1982).

    Article  CAS  Google Scholar 

  39. T. E. Cross and R. Pethig, “Microwave Studies of the Interaction of DNA and Water in the Temperature Range 90-300 K,” Int. J. Quantum Chem: Quantum Biol Symp. 10, 143–152 (1983).

    CAS  Google Scholar 

  40. V. A. Parsegian, “Energy of an Ion Crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems,” Nature (London) 221, 844–846 (1969).

    Article  CAS  Google Scholar 

  41. D. T. Edmonds, “Membrane Ion Channels and Ionic Hydration Energies,” Proc. R. Soc. London Ser. B 211, 51–62 (1980).

    Article  CAS  Google Scholar 

  42. P. C. Jordan, “Electrostatic Modeling of Ion Pores,” Biophys. J. 39, 157–164 (1982); 41, 189–195 (1983).

    Article  Google Scholar 

  43. H. T. Witt, “Energy Conversion in the Functional Membrane of Photosynthesis. Analysis by Light Pulse and Electric Pulse Methods. The Central Role of the Electric Field,” Biochim. Biophys. Acta 505, 355–427 (1979).

    CAS  Google Scholar 

  44. W. N. Königs and J. Boonstra, “Anaerobic Electron Transfer and Active Transport in Bacteria,” Curr. Topics Membr. Transp. 9, 177–231 (1977).

    Article  Google Scholar 

  45. M. Redi and J. J. Hopfield, “Theory of Thermal and Photoassisted Electron Tunneling,” J. Chem. Phys. 72, 6651–6660 (1980).

    Article  CAS  Google Scholar 

  46. D. DeVault, “Quantum Mechanical Tunnelling in Biological Systems,” Quart. Rev. Biophys. 13, 387–564 (1980).

    Article  CAS  Google Scholar 

  47. T. L. Poulos and J. Kraut, “A Hypothetical Model of the Cytochrome c Peroxidase. Cytochrome c Electron Transfer Complex,” J. Biol. Chem. 255, 10322–10330 (1980).

    CAS  Google Scholar 

  48. E. G. Petrov, “Role of Polypeptide Chain Structure in Donor-Acceptor Electron Transfer through Proteins,” Studia Biophysica 93, 237–240 (1983).

    CAS  Google Scholar 

  49. F. M. Richards, “Areas, Volume, Packing, and Protein Structure,” Ann. Rev. Biophys. Bioeng. 6, 151–176 (1977).

    Article  CAS  Google Scholar 

  50. T. E. Cross and R. Pethig, “Microwave Hall Effect Measurements on Biopolymers,” Int. J. Quantum Chem.: Quantum Biol. Symp. 7, 389–395 (1980).

    Google Scholar 

  51. R. Pethig and A. Szent-Györgyi, “Electronic Properties of the Casein-Methylglyoxal Complex,” Proc. Natl. Acad. Sei. USA 74, 226–228 (1977)

    Article  CAS  Google Scholar 

  52. S. Bone and R. Pethig, “Dielectric Properties of Protein-Methylglyoxal Adducts: Interfacial and Bulk Effects,” J. Chem. Soc., Faraday Trans. I 78, 1785–1794 (1982).

    Article  CAS  Google Scholar 

  53. H. A. Scheraga, K. C. Chou, and G. Nemethy, “Interactions between the Fundamental Structures of Polypeptide Chains,” in Conformation in Biology (R. Srinivasan and R. H. Sarma, eds.), pp. 1–10, Adenine Press, New York (1982).

    Google Scholar 

  54. J. Warwicker and H. C. Watson, “Calculations of the Electrical Potential in the Active Site Cleft Due to α-Helix Dipoles,” J. Mol. Biol. 157, 671–679 (1982).

    Article  CAS  Google Scholar 

  55. G. N. Ling, A Physical Theory of the Living State: The Association-Induction Hypothesis, Blaisdell, Waltham, Massachusets (1962).

    Google Scholar 

  56. B. E. Conway, J. O’M. Bockris, and H. Linton, “Proton Conductance and the Existence of the H3O Ion,” J. Chem. Phys. 24, 834–850 (1956).

    Article  CAS  Google Scholar 

  57. M. Eigen and L. De Maeyer, “Self-dissociation and Protonic Charge Transport in Water and Ice,” Proc. R. Soc. London Ser. A 247, 505–533 (1958).

    Article  CAS  Google Scholar 

  58. E. W. Knapp, K. Schulten, and Z. Schulten, “Proton Conduction in Linear Hydrogen- bonded Systems,” Chem. Phys. 46, 215–229 (1980).

    Article  CAS  Google Scholar 

  59. P. R. C. Gascoyne, R. Pethig, and A. Szent-Györgyi, “Water Structure Dependent Charge Transport in Proteins,” Proc. Natl. Acad. Sei. USA 78, 261–265 (1981).

    Article  CAS  Google Scholar 

  60. J. Behi, S. Bone, H. Morgan, and R. Pethig, “Effect of Deuterium-Hydrogen Exchange on the Electrical Conduction in Lysozyme,” Int. J. Quantum Chem: Quantum Biol. Symp. 9, 367–374 (1982).

    CAS  Google Scholar 

  61. F. Freund, “Proton Highlife and Midway Tunneling,” Trends Biochem. Sci. 6, 142–145 (1981).

    Article  CAS  Google Scholar 

  62. W. Saenger, Ch. Betzel, B. Hingerty, and G. M. Brown, “Flip-Flop Hydrogen Bonding in a Partially Disordered System,” Nature (London) 296, 581–583 (1982).

    Article  CAS  Google Scholar 

  63. S. Bone and R. Pethig, “Cyclodextrins as Model Systems for the Study of Proton Transport,” Int. J. Quantum Chem: Quantum Biol. Symp. 10, 133–141 (1983).

    CAS  Google Scholar 

  64. J. Behi, S. Bone, H. Morgan, and R. Pethig, “Protonic Charge Transport Studies in Cyclodextrins,” in Charge and Field Effects in Biosystems (M. J. Allen and P. N. R. Usherwood, eds.), pp. 139–146, Abacus Press, Tunbridge Wells (1984).

    Google Scholar 

  65. A. Szent-Györgyi, Introduction to a Submolecular Biology, pp. 135, Academic Press, New York (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Pethig, R. (1986). Ion, Electron, and Proton Transport in Membranes: A Review of the Physical Processes Involved. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics