Skip to main content

Part of the book series: Ettore Majorana International Science Series ((PRIP))

Abstract

During the last two decades, the use of ELF magnetic and electric fields to stimulate bone growth and repair knew an increasing interest and its approach evolves from empirical to experimental methods.

“... when you can measure what you are speaking about and express it in numbers you know something about it; but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind.” Lord Kelvin (1891)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andry, N., 1741? L’Orthopédie. Lambert et Durant, Paris.

    Google Scholar 

  • Athenstaedt, H., 1968, Permanent electric polarization and pyroelectric behaviour of the vertebrate skeleton. I. Z. Zelforsch 91: 135.

    Article  Google Scholar 

  • Athenstaedt, H., 19T0, Permanent longitudinal electric polariza-tion and behaviour of collagenous structures and nervous tissue in man and other vertebrates. Nature 228: 830–83.

    Google Scholar 

  • Barth, L.G., and Barth, L.J., 1975 Ionic regulation of embryonic induction and cell differentiation in Rana pipens. Develop. Biol. 39: 1.

    Google Scholar 

  • Barth, L.G., and Barth, L..J., I9695 The sodium dependence of em¬bryonic induction. Develop. Biol. 20: 236–245.

    Google Scholar 

  • Barth, L.G., and Barth, L.J., 1972, 22Na and 45Ca uptake during embryonic induction in Rana pipens. Develop. Biol. 28: 18–26.

    Google Scholar 

  • Bassett, C.A.L., I968, Biologic significance of piezoelectricity. Calc. Tiss. Res. 1: 252–272.

    Google Scholar 

  • Bassett, C.A.L., 19713 Biophysical principles affecting bone structure, in: Bourne G.H. The biochemistry and physiology of bone. Academic Press, New York and London, vol. I II.

    Google Scholar 

  • Bassett, C.A.L., and Becker, R.O., I962, Generation of electrical potentials by bone in response to mechanical stress. Science 137: 1063.

    Google Scholar 

  • Bassett, C.A.L., Pawluk, R. J., and Becker, R.O. I961, Effect of electric currents on bone in vivo. Nature 20U: 652 - 654.

    Google Scholar 

  • Bassett, C.A.L., and Herman, I., I968, The effect of electrostatic fields on macromolecular synthesis by fibroblasts in vitro. J.Cell.Biol. 9a: 39.

    Google Scholar 

  • Bassett, C.A.L., Pawliik, R.J., and Pilla, A.A., 1974, Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann. N.Y. Acad.Sci. 238: 242–262.

    Article  ADS  Google Scholar 

  • Bassett, C.A.L., Pilla, A., and Pawluk, R.J., 1977, A non-operative salvage of surgically-resistant pseudarthroses and non¬unions by pulsing electromagnetic fields. Clin.Orthop. 124

    Google Scholar 

  • I28-IÍ13.

    Google Scholar 

  • Bassett, C., Mitchell, S.N., Norton, L., Caulo, N., and Gaston, S., 1979 5 Electromagnetic repair of non-uinions, J: Electrical properties of bone and cartilage. Ed. Brighton Ct. Grune and Stratton, pp 605–630, New York.

    Google Scholar 

  • Becker, R.O., I96I, The bioelectric factors in amphibian-limb regeneration. J.Bone Jt Surg.

    Google Scholar 

  • Becker, R.O., Bassett, C.A.L., and Bachman, C.H., 1964, Bioelectrical factors controlling bone structure, in: Frost H. Bone biodynamics. Little, Brown, pp 209, Boston.

    Google Scholar 

  • Becker, R.O., 19675 The electrical control of growth processes. Med.Ims. 95: 657 - 669.

    Google Scholar 

  • Berenger-Feraud, L.J.B., I878, Traité des fractures non consolidées. Delahaye, I878, Paris.

    Google Scholar 

  • Brighton, C.T., Friedenberg, Z.B., Zemsky, L.M., and Pollis, R., 1975, Direct current stimulation of non-unions and congenital pseudarthrosis. J.Bone Jt Surg. 57A: 368–377.

    Google Scholar 

  • Brighton, C.T., Cronkey, J.E., and Osterman, A.L., 1976, In vitro epiphyseal-plate growth in various constant electrical fields. J.BoneiJt Surg. 58A: 971–978.

    Google Scholar 

  • Brighton, C.T., Friedenberg, Z.B., Mitchell, E.I., and Booth, R.E., 19775 Treatment of non-union with constant direct cxirrent. Clin.Orthop. 124: 106–123.

    Google Scholar 

  • Brighton, C.T., Black, J., Friedenberg, Z.B., Esterhai, J.L., Day, L.J., and Connolly, J.F., I98I, A multicenter study of the treatment of non-union with constant direct current. J.Bone Jt Surg. 63A(1):2–3.

    Google Scholar 

  • Burny, F., 19795 Strain gauge measurements of fracture healing, in: External Fixation The Current State of the Art Ed. Brooker A., Edwards C.C., pp 371–382, Pub Williams and Wilkins Co Bait imore.

    Google Scholar 

  • Chiabrera, A., Hinsenkamp, M., Pilla, A., and Nicolini C., 1979, Electrochemical information transfer from cell surface to chromatin under electromagnetic exposure, Nicolini C. Chromatin structure and function. Plenum Press, part B. pp 811-820.

    Google Scholar 

  • Chiabrera, A., Hinsenkamp, M., Pilla, A., Ryaby, J., Ponta, D., Belmont, A., Beltrame, F., Grattarola, M., and Nicolini, C., 19795 Cytofluorimetry of electromagnetically controlled cell dedifferentiation. J.Histochem.Cytochem. 27:no.1.

    Google Scholar 

  • Cone, C.D., and Cone, C.M., 1976, Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 192: 155–158.

    Article  ADS  Google Scholar 

  • Connolly, J., Hahn, H., and Jardon, 0., 1977, The electrical enhancement of periosteal proliferation in normal and delayed fracture healing. Clin.Orthop. 124: 97–105.

    Google Scholar 

  • Dierickx, M., Hinsenkamp, M., Rybowski, L., and Burny, F., 1982, Electromagnetic and electric field configurations produced by two coils. Acta Orthop.Scand. 53,Suppl. I96: 19 - 38.

    Google Scholar 

  • Erikson, C., 19T15 Electrical properties of bone, J: Bourne G.H. The biochemistry and physiology of bone. Academic Press, vol. IV3 New York and London.

    Google Scholar 

  • Friedenberg, Z.B., and Brighton, C.T., I966, Bioelectric potentials in bone. J.Bone Jt Surg. 48A: 915–923.

    Google Scholar 

  • Friedenberg, Z.B., Andrews, E.T., Smolenski, B.I., Pearl, B.¥., and Brighton, C.T., 1970, Bone reaction to varying amount of direct current. Surg.Gynec.Obst. 131: 884–889.

    Google Scholar 

  • Friedenberg, Z.B., Harlow, M.C., and Brighton, C.T., 1971, Healing of the medial malleolus by means of direct current: a case report. J.Traima 11: 883–885.

    Article  Google Scholar 

  • Friedenberg, Z.B., Roberts, P.O., Didizian, N.H., and Brighton

    Google Scholar 

  • O.T., 19715 Stimulation of fracture healing by direct current in the rabbit fibula. J.Bone Jt Surg. 53A:1400–1U08.

    Google Scholar 

  • Friedenberg, Z.B., Zemsky, L.M., Pollis, R.P., and Brighton, C.T., 1979 The response of non-traumatized bone to direct current. J.Bone Jt Surg. 56A: 1023–1030.

    Google Scholar 

  • Frost, H.M., 1964, The laws of bone structure. Thomas, Springfield, Illinois.

    Google Scholar 

  • Fukada, E., and Yasuda, I., 1957» On the piezo-electric effect of bone. J.Phys.Soc.Japan 12: 1158.

    Google Scholar 

  • Fukada, E., 1983, Piezoelectricity of bone and natural biomaterials. Erasme Orthopedic Seminar, 1983 (unpublished).

    Google Scholar 

  • Galileo, G., I6385 Discorsi e dimostrazioni mathematiche interne a due nuove scienze, (translated by H. Crew and A. de Salvio, eds, Mac Millan, New York, 1914 ).

    Google Scholar 

  • Gayda, T., 1912, Arch.Ital.Biol. 58: 147.

    Google Scholar 

  • Geddes, L.A., and Baker, L.E., 1967? The specific resistance of biological materials. A compendium of data for the biomedical engineer and physiologist, Med. & Biol. 5: 271–293.

    Google Scholar 

  • Goodman, R., Ryaby, J., Zegarelli-Schmidt, E., Bassett, C., and Henderson, A.S., 1983 The effect of selected electromagnetic fields on protein biosynthesis. Extended abstract l63rd meeting of the electrochemical society. May 8–13, 1983, San Francisco.

    Google Scholar 

  • Harris, W., Moyen, B., Thrasher, E., Davis, L., Cobden, R., Mackensie, D., and Cywinski, J., 1977? Differential response to electrical stimulation. Clin.Orthop. 124: 31–40.

    Google Scholar 

  • Hart, F.X., and Marino, A.A., 1982, The electrical environment produced at bone fracture sites by inductive coupling. Trans. 2nd Annual Meeting of the B.R.A.G.S., Sep 20–22, 1982, Oxford.

    Google Scholar 

  • Hassler, C.R., Rybicki, E.F., Diegle, R.B., and Clark, L.C., 1977, Studies on enhanced bone healing via electrical stimuli. Clin.Orthop. 124: 9–19.

    Google Scholar 

  • Herbst, E., 1978, Electric stimulation of bone growth and repair: a review of different stimulation methods, Electrical stimulation of bone growth and repair. Springer-Verlag, Ber-lin, Heidelberg, pp 19–32, New York.

    Google Scholar 

  • Hinsenkamp, M., Bourgois, R., Bassett, C., Chiabrera, A., Burny, F.5 and Ryaby, J., 19785 Electromagnetic stimulation of fractiire repair. Influence on healing of fresh fractures. Acta Orthop.Belg. 4441: 671–698.

    Google Scholar 

  • Hinsenkamp, M., Burny, F., Donkervolcke, M., and Dierickx, M., 19785 Modifications of electric potentials of the pins of Hoffmann’s “Fixateur Externe” during fracture healing. Acta Orthop.Belg.):732–737-

    Google Scholar 

  • Hinsenkamp, M., Burny, F., Jedwah, J., and Bourgois, R., 1978, Corrosion of implants during electric stimulation of fracture healing, in: Electric stimulation of bone growth and repair, Ed. Hinsenkamp, M., Burny, F., Jedwah, J., and Bourgois, R., pp 77–83, New York.

    Google Scholar 

  • Hinsenkamp, M., Chiabrera, A., and Bassett, C.A.L., 1978, Space configuration changes of DM due to electromagnetic stimulation. Acta Orthop.Belg. 14: 636–650.

    Google Scholar 

  • Hinsenkamp, M., 1982, Traitement des pseudarthroses par stimula-tion électromagnétique. Rev.Méd.Briix. 3 (1): 19–28.

    Google Scholar 

  • Hinsenkamp, M., I982, Treatment of non-unions by electromagnetic stimulation. Acta Orthop.Scand. Suppl. 196: 63–80.

    Google Scholar 

  • Hinsenkamp, M., and Rooze, M., 1982, Morphological effect of elec-tromagnetic stimulation on limb skeleton of the new born mouse. Acta Orthop.Scand. Suppl. 196: 39–50.

    Google Scholar 

  • Hinsenkamp, M., 1983, Die Behandlxmg von Falschgelenkbildung mit der elektromagnetischen Stimulation. Extracta Orthop. 6 (1): 13–29.

    Google Scholar 

  • Hinsenkamp, M., Ryaby, J., and Burny, F., 1984, Treatment of non-union by pulsing electromagnetic field. European multicenter study of 308 cases. Proceedings of the Fourth European Symposiam on electric and electromagnetic stimulation of bone growth, (in press 1984), Nijmegen.

    Google Scholar 

  • Hinsenkamp, M., Burny, F., Donkerwolcke, M., and Coussaert, E., 1984, Electromagnetic stimulation of fresh fractures treated with Hoffmann external fixation. Proceedings of the 10th International Conference on Hoffmann External Fixation in Orthopedics, (in press I98U), Brussels.

    Google Scholar 

  • Hinsenkamp, M., Lheureux, P., and Martins, D., 1984, Transmembrane Na/K exchanges under electromagnetic fields. Preliminary stu¬dy on human erythrocytes. Proceedings of the Fourth European Symposixim on electric and electromagnetic stimulation of bone growth, (in press 1981), Nijmegen.

    Google Scholar 

  • Jansen, M., 1920, On bone formation: its relation to tension and pressure. Longmans, Green, New York.

    Google Scholar 

  • Jorgensen, T.E., 1972, Measurements of stability of crural fractxires treated with Hoffmann osteotaxis. 1. Method and measurements of deflexion on autopsy crura. Acta Orthop.Scand. 143: 188–1206.

    Google Scholar 

  • Jorgensen, T.E., I9TT9 Electrical stimulation of human fracture, healing hy means of a slow pulsating, asymmetrical direct current. Clin. Orthop. 124: 124–127.

    Google Scholar 

  • Jorgensen, T.E., I98I, Asymmetrical slow-pulsating direct current. Clin.Orthop. 161: 67–70.

    Google Scholar 

  • Keith, A., 19195 Menders of the maimed. Oxford University Press, London and New York.

    Google Scholar 

  • Kelvin, 18915 Popular lectures and addresses. Mc Millan, vol 1:80.

    Google Scholar 

  • Kraus, W., and Lechner, F., 1972, Die heilung von Pseudarthrosen und Spontanfracturen duren strukturhildende electrodynamische Potentiale. Münch. Med. Wsehr. 144: 1814–l819.

    Google Scholar 

  • Lanyon, L.E., and Baggott, D.G., 19T6, Mechanical function as an influence on the structure and form of bone. J.Bone Jt Surg. 58B: 436.

    Google Scholar 

  • Lente, R.W., I85O, Case of un-united fracture treated by electricity. N. Y. Med. J 5: 317.

    Google Scholar 

  • Levy, D.D., 19713 Induced osteogenesis by electrical stimulation. J electrochem Soc. 118: 118:1438–442.

    Google Scholar 

  • Levy, D.D., and Rubin, B., 1972, Inducing bone growth in vivo by pulse stimulation. Clin.Orthop. 88: 218–222.

    Article  Google Scholar 

  • Levy, D.D., 1975 A pulsed electrical stimulation technique for inducing bone growth. Ann.N.Y.Acad.Sci. 238:478:490.

    Google Scholar 

  • Lokietek, W., Pawliok, R.J., and Bassett, C.A.L., 1974, Muscle injury potentials: a source of voltage in the underformed rabbit tibia. J.Bone Jt Surg. 56B: 361.

    Google Scholar 

  • Lunt, M.J., 1982, Magnetic and electric fields produced during pulsed-magnetic-field therapy for non-union of the tibia, Med, and Biol. Engng. & Comp. 20: 501–511.

    Article  Google Scholar 

  • Mc Elhaney, J.H., Stalnayer, R., and Bullard, R., 1968, Electric field and bone loss of disease. J.Biomech. 1: 477–52.

    Article  Google Scholar 

  • Mc Conaill, H.M., 1951, J Bone Jt Surg. 33B: 252.

    Google Scholar 

  • Mc Leod, B.R., Pilla, A.A., and Sampsel, M.W., 1982, Helmholtz coil - cell system spatial relationship and electrical dosage in the electromagnetic modulation of tissue growth and re-pair, Trans. 2nd Annual Meeting of the B.R.A.G.S., Sep 20–22, 1982, Oxford.

    Google Scholar 

  • Mc Leod, B.R., and Parker, R., I983, Electromagnetic signal analy-sis applied to boundaries in electrical cell function control. Proceedings l63rd Meeting of the Electrochemical Society, May 8-13, 1983, San Francisco.

    Google Scholar 

  • Mc Leod, B.R., and Parker, R., 1983, Computer solutions to complex boundary value problems. Trans 3rd Annual meeting of the B.R.A.G.S., Oct 2-5, 1983, San Francisco.

    Google Scholar 

  • Moyen, B., Lands, D.A., Thrasher, E.L., and Harris, W.H., 1978, La stimulation électrique de 1’Osteogenese. Etude delacathodeActa Orthop.Belg. 44:664-670

    Google Scholar 

  • Moyen, B., and Comtet, J.J., 198I, La stimulation électrique et électromagnétique delostognase. Encycl.Méd.Chir.,1981, Paris.

    Google Scholar 

  • Nollet, J., 1T53, Essai sur électricité des corps. Guérin, 1753, Paris.

    Google Scholar 

  • Norton, L.A., and Moore, R.R., 1972, Bone growth in organ culture modified by an electric field. J. Dent. Res. 51: 1492 - 1499.

    Article  Google Scholar 

  • Norton, L.Â., Rodan, G.A., and Bourret, L.A., 1977, Epiphyseal cartilage cAMP changes produced by electrical and mechanical perturbations. Clin. Orthop 124: 59–68.

    Google Scholar 

  • Norton, L.A., Bourret, L.A., Majeska, R.J., and Rodan, G.A., 1979, Adherence and DNA synthesis changes in hard tissue cell culture produced by electric perturbation, in: Brighton C.T. Electrical Properties of bone and cartilage. Grune and Stratton, pp New York.

    Google Scholar 

  • Pauwels, Fr.3 1973, Kurzer Ubenblich über die mechanische Bean- sprung des Knochens und ihre Bedeutimg für die funktionelle Anpassmg. Z.Ort hop. 111: 681–705.

    Google Scholar 

  • Pienkowski, D., and Pollack, S.R., 1983, The origin of stress- generated potentials in fluid-saturated bone. Journal of Orthopaedic Research, 1:30–41 Raven Press, New York.

    Google Scholar 

  • Richez, J.5 Chamay, A., and Bieler, L., 1972, Bone changes due to pulses of direct electric microcurrent. Virchows Arch. Abt. a-path.Anat. 357: 11–18.

    Article  Google Scholar 

  • Rodan, G.A., Bourret, L.A., and Norton, L.A., 1978, DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science 199: 690.

    Article  ADS  Google Scholar 

  • Rooze, M., and Hinsenkamp, M., 1982, ‘ In vitro’ histochemical modifications induced by electromagnetic stimulation. Acta Orthop.Scand. Suppl.196:51–62.

    Google Scholar 

  • Rooze, M., and Hinsenkamp, M., 1984, In vivo modifications induced by electromagnetic stimulation of chicken embryos. Proceedings of the Fourth European Symposium on electric and elec¬tromagnetic stimulation of bone growth, (in press 1984).

    Google Scholar 

  • Roux, W., 1920, Bemerkungen zur Analyse des Reisgeschekens und der funktionelle Anpassung so wie zum Anteil dieser Anpassung an der Entwiklung des Reiches der Leben. Arch. Entwickl.-Mech. Org. tó: U85.

    Google Scholar 

  • Schwan, H.P., 1957, Electrical properties of tissues and cell sus¬pensions Advances in biological and medical physics, J.H. Lawrence & G.A. Tobias (Eds.), vol 5:147–207, Acad.Press, New York.

    Google Scholar 

  • Schwan, H.P., 1957, Electrical properties measured with alternating currents, in: Handbook of Biological Data, Spectral (Ed.), Sanders, London.

    Google Scholar 

  • Seroo, J.M., Kodde, L., Massen, C.H.,;and Magis, F., 1978, Measuring of electrical voltage difference during fracture hea¬ling. Preliminary report. Acta Orthop.Belg. UU: 725–731.

    Google Scholar 

  • Tager, K.H., 1975, Anwendung electrodynamischer Wechselpotentiale in der operativen und konservativen Orthopädie. Münch. Med. Wschr. 117: 791–798.

    Google Scholar 

  • Thompson, D.W. 5 1983, On growth and fom. Cambridge University- Press, London and New York.

    Google Scholar 

  • Tonino, A.J., Davidson, C.L., Klopper, and Lindan, L.A., 19763 Protection from stress in bone and its effect. J.Bone Jt Surg. 58B: 107.

    Google Scholar 

  • Tuerlinckx, B., Boido, M., and Hinsenkamp, M., 1982, Analysis of the electromagnetic fields caused by bone growth stimulators. A boundary-element simulation program. Proceedings of the Fourth European European Symposium on Electric and Electromagnetic Stimulation of Bone Growth, January 20th, I982 (in press).

    Google Scholar 

  • Tuerlinckx, B., 1983, Approximate analysis of the waveform of a typical bone growth stimulator. Int.Rep. E.G.83. 01, I983 (unpublished).

    Google Scholar 

  • Uhthoff, H.K., and Dubuc, F.L., 19715 Bone structure changes in the dog under rigid internal fixation. Clin.Orthop. 8l: l65–170.

    Google Scholar 

  • Van Helmont, J.B., 1621, De magnética vulner-utn naturali et legitima curatione, Paris.

    Google Scholar 

  • Watson, J., Dehaas, W.G., and Hauser, S.S., 1975, Effect of elec-tricfields on growth rate of embryonic chick tibiae in vitro. Mature 254: 331–332.

    Article  ADS  Google Scholar 

  • Werhahn, C., and Weigert, M., 19783 Die Stimulierung der primären Knochenheilimg durch electrischen Gleichstrom. Z.Orthop. 112: 1226–1212.

    Google Scholar 

  • Weigert, M., 1978, Plated cortices and electric potentials, in: Burny F., Herbst E., Hinsenkamp M. Electric stimulation of bone growth and repair. Springer-Verlag, Berlin, Heidelberg, pp 63–61, New York.

    Google Scholar 

  • Weigert, M., Werhahn, C., and Mulling, M., 1972, Beschleunigung der knöchernen Heilxmg von Osteotomien an Schafen durch elek-trischen Strom. Z.Orthop. 110: 959–962.

    Google Scholar 

  • Wittebol, P., and Steendijk, J.R., 1969, Piezoeffect en botstimulering. Ned.Tydschr.Geneeskd 113: 1929–1930.

    Google Scholar 

  • Wittebol, P.3 1970, Stimulation on non-epiphyseal bone growth. CaJLcif.Tissue Res, k Suppl. 122.

    Google Scholar 

  • Wolff, J., 1892, Das Gesetz der Transformation der Knochen. Hir- schold, Berlin.

    Google Scholar 

  • Yasuda, I,, 19593 On the piezoelectric activity of bone. J.Jap. Orthop.Surg.Soc. 28: 26

    Google Scholar 

  • Yasuda, I., 1955? Dynamic callus and electric callus. J.Bone Jt Surg. 37A: 1292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Hinsenkamp, M., Tuerlinckx, B., Rooze, M. (1985). Effect of Elf Fields on Bone Growth and Fracture Repair. In: Grandolfo, M., Michaelson, S.M., Rindi, A. (eds) Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2099-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2099-9_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9243-2

  • Online ISBN: 978-1-4613-2099-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics