Skip to main content

Absence of Resistivity Saturation and its Implications for the High Tc Superconductors

  • Chapter
Novel Superconductivity

Abstract

Temperature-dependent resistivity ρ(T) was measured from Tc to 1100K in ceramic samples of La1.825Sr0.175CUO4 (LSCO) and YBa2Cu3O7 (YBCO). Measurements above 300K were performed in a flow of O2. In LSCO ρ(T) is linear to 1100K; in YBCO ρ(T) is linear to 600K, increases faster than linear at T>600K, owing to the loss of oxygen, and shows a break in slope at the structural phase transition near 950K. It is argued that the observed absence of saturation in the linear parts of the data implies weak electron-phonon coupling in both superconductors, and, coupled with absolute values of the resistivity, places constraints on band structure parameters. Our results take anisotropy into account explicitly and are combined with recent μSR measurements of the penetration depth to obtain experimental estimates of the plasma energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. G. Bednorz and K. A. Muller, Z. Phys. b 64, 189 (1986); M. K. Wu, J. R. Ashbun, C. J. Tong, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. O. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    Google Scholar 

  2. P. B. Allen, T. B. Beaulac, F. S. Khan, W. H. Butler, F. J. Pinski, and J. C. Swihart, Phys. Rev. B34, 4331 (1986); P. B. Allen, “Empirical Electron- Phonon λ Values”, preprint.

    Google Scholar 

  3. M. Gurvitch, Physica 135B, 276 (1985).

    CAS  Google Scholar 

  4. R. J. Cava, B. Batlogg, R. B. vanDover, and E. A. Rietman, Phys. Rev. Lett. 58, 408 (1987).

    Article  CAS  Google Scholar 

  5. R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Espinosa, Phys. Rev. Lett. 58, 1676 (1987).

    Article  CAS  Google Scholar 

  6. P. K. Gallagher, to be published in Adv. Ceram. Mater.; K. Kishio, J. Shimoyama, T. Hasegawa, K. Kitazawa, and K. Fueki, preprint.

    Google Scholar 

  7. C. Michel and B. Raveau, Rev. Chim. Min. 21, 407 (1984).

    CAS  Google Scholar 

  8. This was first realized a long time ago by J. Bardeen, Phys. Rev. 80, 567 (1950); H. Frôlich Phys. Rev. 79, 845 (1950).

    Google Scholar 

  9. This line of thought was not obvious to us until we performed the measurements at high temperatures and observed the absence of saturation. At the APS Meeting in March one of us argued that room-temperature ρ(T) coupled with band structure hωp provides sufficiently large values of λ, at least in LSCO: M. Gurvitch, Bull. Am. Phys. Soc. 32, 905 (1987).

    Google Scholar 

  10. N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials”, Clarendon Press, Oxford (1979); A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).

    Google Scholar 

  11. G. Aeppli, R. J. Cava, E. J. Ansaldo, J. H. Brewer, S. R. Kreitzman, G. M. Luke, D. R. Noakes, and R. F. Kiefl, Phys. Rev. B 35, 7129 (1987); W. J. Kossler, J. R. Kempton, X. H. Yu, H. E. Schone, Y. J. Uemura, A. R. Moodenbaugh, M. Suenaga, and C. E. Stronach, ibid., p. 7133;

    Google Scholar 

  12. D. R. Harshman, G. Aeppli, E. J. Ansaldo, B. Batlogg, J. H. Brewer, J. F. Carol an, R. J. Cava, M. Celio, A. C. D. Chaklader, W. N. Hardy, S. R. Kreitzman, G. M. Luke, D. R. Noakes, and M. Senba, Phys. Rev., to be published; W. J. Kossler, private communication; D. R. Harshman, private communication.

    Google Scholar 

  13. Z. Fisk and G. W. Webb, Phys. Rev. Lett. 36, 1084 (1976).

    Article  CAS  Google Scholar 

  14. D. W. Woodard and G. D. Cody, Phys. Rev. 136, A106 (1964).

    Article  Google Scholar 

  15. H. Wiesmann, M. Gurvitch, H. Lutz, A. K. Ghosh, B. Schwarz, M. Strongin, P. B. Allen, and J. W. Halley, Phys. Rev. 3, 782 (1977).

    Google Scholar 

  16. The detailed account of all the parameters which enter into this calculation will have to be given elsewhere.

    Google Scholar 

  17. J. E. Crow, M. Strongin, R. S. Thompson, and O. F. Kammerer, Phys. Lett. 30, 161 (1969); L.F. Mattheiss and L. R. Testardi, Phys. Rev. B 20, 2196 (1979).

    Google Scholar 

  18. B. Chakraborty, W. E. Pickett and P. B. Allen, Phys. Rev. B14, 3227 (1976).

    Google Scholar 

  19. P.B. Allen, Phys. Rev. Lett. 37, 1638 (1976).

    Article  CAS  Google Scholar 

  20. M. H. Cohen, Phil. Mag. 3, 762 (1958).

    Article  CAS  Google Scholar 

  21. L.F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987); also private communication.

    Article  CAS  Google Scholar 

  22. L.F. Mattheiss and D. R. Hamann, Solid State Commun., to be published.

    Google Scholar 

  23. The observed small increase in a of LSCO at the highest temperature (Fig. 2) can in fact be attributed to marginal winning of the described mechanisms over saturation. Alternatively, it may be due to incipient oxygen desorption, as in YBCO.

    Google Scholar 

  24. R. B. van Dover, private communication.

    Google Scholar 

  25. Y. Enomoto, T. Murakami, M. Suzuki, and K. Moriwaki, preprint.

    Google Scholar 

  26. R. N. Bhatt, private communication.

    Google Scholar 

  27. M. Suzuki and T. Murakami, Jpn. J. Appl. Phys. 26, L524 (1987).

    Article  CAS  Google Scholar 

  28. A. Kapitulnik and T. H. Geballe, private communication.

    Google Scholar 

  29. P. B. Allen, W. E. Pickett and H. Krakauer, preprint. It is interesting to compare the average parameters derived from the anisotropic values given by Allen et al. in this reference for LSCO with those calculated by Mattheiss, Ref. 21. We find fine agreement for the plasma energy \(\langle \overleftarrow h {\omega_p}\rangle \)= 2.45eV in both cases (at zero Sr concentration). For <vF> there appears to be a discrepancy: while from this reference we obtain \(\left[{\left({v_x^2+v_y^2+v_z^2}\right)/3}\right]\) 1/2 = 2.45X107 cms-1, Mattheiss finds <vp>= 4.5X107 cms-1. The discrepancy may be simply in the \(\sqrt3\).

    Google Scholar 

  30. A. Junod, A. Bezinge, and D. Cattani, J. Cors, M. Decroux, O. Fischer, P. Genoud, L. Hoffmann, J.-L. Jorda, J. Muller, and E. Walker, preprint.

    Google Scholar 

  31. J. Orenstein, G. A. Thomas, D. H. Rapkine, C. G. Bethea, B. F. Levine, R. J. Cava, E. A. Reitman, D. W. Johnson, Jr., Phys. Rev. B, in press.

    Google Scholar 

  32. J. Geerk, M. Gurvitch, D. B. McWhan, and J. M. Rowell, Physica 109-110B, 1775 (1982).

    Google Scholar 

  33. C. Varmazis and M. Strongin, Phys. Rev. B10, 1885 (1974).

    Google Scholar 

  34. V. Z. Kresin, Proceedings of the Materials Research Society Spring 1987 Meeting; V. Z. Kresin and S. A. Wolf, preprint.

    Google Scholar 

  35. M. L. Cohen, this volume.

    Google Scholar 

  36. B. Batlogg, R. J. Cava, A. Jayaraman, R. B. van Dover, G. A. Kourouklis, S. Sunshine, D. W. Murphy, L. W. Rupp, H. S. Chen, A. White, K. T. Short, A. M. Mujsce, and E. A. Rietman, Phys. Rev. Lett. 58, 2333 (1987); L. C. Bourne, M. F. Crommie, A. Zettl, H.-C. zur Loye, S. W. Keller, K. L. Leary, A. M. Stacy, K. J. Chang, M. L. Cohen, and D. E. Morris, ibid., p. 2337.

    Google Scholar 

  37. B. Batlogg et al., submitted to Phys. Rev. Lett.

    Google Scholar 

  38. R. Micnas, J. Ranninger, and S. Robaszkiewicz, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gurvitch, M., Fiory, A.T. (1987). Absence of Resistivity Saturation and its Implications for the High Tc Superconductors. In: Wolf, S.A., Kresin, V.Z. (eds) Novel Superconductivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1937-5_76

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1937-5_76

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9076-6

  • Online ISBN: 978-1-4613-1937-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics